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BOUNDEDNESS FOR NONLINEAR PERTURBED

FUNCTIONAL DIFFERENTIAL SYSTEMS VIA

t∞-SIMILARITY

Dong Man Im*

Abstract. This paper shows that the solutions to the nonlinear
perturbed differential system

y′ = f(t, y) +

∫ t

t0

g(s, y(s), T1y(s))ds + h(t, y(t), T2y(t)),

have bounded properties. To show these properties, we impose con-
ditions on the perturbed part

∫ t

t0
g(s, y(s), T1y(s))ds, h(t, y(t), T2y(t)),

and on the fundamental matrix of the unperturbed system y′ =
f(t, y) using the notion of h-stability.

1. Introduction

Pachpatte[16,17] investigated the stability, boundedness, and the as-
ymptotic behavior of the solutions of perturbed nonlinear systems under
some suitable conditions on the perturbation term g and on the operator
T . The purpose of this paper is to investigate bounds for solutions of
the nonlinear differential systems further allowing more general pertur-
bations that were previously allowed using the notion of h-stability.

The notion of h-stability (hS) was introduced by Pinto [18,19] with
the intention of obtaining results about stability for a weakly stable
system (at least, weaker than those given exponential asymptotic sta-
bility) under some perturbations. That is, Pinto extended the study
of exponential asymptotic stability to a variety of reasonable systems
called h-systems. Choi, Ryu [7] and Choi, Koo [8] investigated bounds
of solutions for nonlinear perturbed systems. Also, Goo [10,11,12] and
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Im et al. [5,6,14] studied the boundedness of solutions for the perturbed
differential systems.

2. preliminaries

In this paper we study bounds of solutions for a class of the nonlinear
perturbed differential systems of the form
(2.1)

y′ = f(t, y) +

∫ t

t0

g(s, y(s), T1y(s))ds+ h(t, y(t), T2y(t)), y(t0) = y0,

where f ∈ C(R+ × Rn,Rn), g, h ∈ C(R+ × Rn × Rn,Rn) , f(t, 0) = 0,
g(t, 0, 0) = h(t, 0, 0) = 0, Rn is the Euclidean n-space and T1, T2 :
C(R+,Rn) → C(R+,Rn) are continuous operators. We consider non-
linear unperturbed differential system of (2.1)

x′(t) = f(t, x(t)), x(t0) = x0,(2.2)

where f ∈ C(R+×Rn,Rn), R+ = [0,∞). We assume that the Jacobian
matrix fx = ∂f/∂x exists and is continuous on R+×Rn and f(t, 0) = 0.

For x ∈ Rn, let |x| = (
∑n

j=1 x
2
j )

1/2. For an n × n matrix A, define the

norm |A| of A by |A| = sup|x|≤1 |Ax|.
We let x(t, t0, x0) denote the unique solution of (2.2) passing through

(t0, x0), existing on [t0,∞). Then we can consider the associated vari-
ational systems around the zero solution of (2.2) and around x(t), re-
spectively,

v′(t) = fx(t, 0)v(t), v(t0) = v0(2.3)

and

z′(t) = fx(t, x(t, t0, x0))z(t), z(t0) = z0.(2.4)

The fundamental matrix Φ(t, t0, x0) of (2.4) is given by

Φ(t, t0, x0) =
∂

∂x0
x(t, t0, x0),

and Φ(t, t0, 0) is the fundamental matrix of (2.3).
We introduce some notions[19] and results to be used in this paper.

Definition 2.1. The system (2.2) (the zero solution x = 0 of (2.2))
is called an h-system if there exist a constant c ≥ 1, and a positive
continuous function h on R+ such that

|x(t)| ≤ c |x0|h(t)h(t0)
−1
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for t ≥ t0 ≥ 0 and |x0| small enough
(
here h(t)−1 = 1

h(t)

)
.

Definition 2.2. The system (2.2) (the zero solution x = 0 of (2.2))
is called (hS) h-stable if there exists δ > 0 such that (2.2) is an h-system
for |x0| ≤ δ and h is bounded.

LetM denote the set of all n×n continuous matrices A(t) defined on
R+ and N be the subset of M consisting of those nonsingular matrices
S(t) that are of class C1 with the property that S(t) and S−1(t) are
bounded. The notion of t∞-similarity in M was introduced by Conti
[9].

Definition 2.3. A matrix A(t) ∈M is t∞-similar to a matrix B(t) ∈
M if there exists an n × n matrix F (t) absolutely integrable over R+,
i.e., ∫∞

0 |F (t)|dt <∞

such that

Ṡ(t) + S(t)B(t)−A(t)S(t) = F (t)(2.5)

for some S(t) ∈ N .

The notion of t∞-similarity is an equivalence relation in the set of
all n × n continuous matrices on R+, and it preserves some stability
concepts [9, 13].

Lemma 2.4. [19] The linear system

x′ = A(t)x, x(t0) = x0,(2.6)

where A(t) is an n × n continuous matrix, is an h-system (respectively
h-stable) if and only if there exist c ≥ 1 and a positive and continuous
(respectively bounded) function h defined on R+ such that

|Φ(t, t0, x0)| ≤ c h(t)h(t0)
−1(2.7)

for t ≥ t0 ≥ 0, where Φ(t, t0, x0) is a fundamental matrix of (2.6).

We need Alekseev formula to compare between the solutions of (2.2)
and the solutions of perturbed nonlinear system

y′ = f(t, y) + g(t, y), y(t0) = y0,(2.8)

where g ∈ C(R+×Rn,Rn) and g(t, 0) = 0. Let y(t) = y(t, t0, y0) denote
the solution of (2.8) passing through the point (t0, y0) in R+ × Rn.

The following result is due to Alekseev [1].
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Lemma 2.5. [2] Let x and y be a solution of (2.2) and (2.8), re-
spectively. If y0 ∈ Rn, then for all t ≥ t0 such that x(t, t0, y0) ∈ Rn,
y(t, t0, y0) ∈ Rn,

y(t, t0, y0) = x(t, t0, y0) +
∫ t
t0

Φ(t, s, y(s)) g(s, y(s)) ds.

Theorem 2.6. [7] If the zero solution of (2.2) is hS, then the zero
solution of (2.3) is hS.

Theorem 2.7. [8] Suppose that fx(t, 0) is t∞-similar to fx(t, x(t, t0, x0))
for t ≥ t0 ≥ 0 and |x0| ≤ δ for some constant δ > 0. If the solution
v = 0 of (2.3) is hS, then the solution z = 0 of (2.4) is hS.

Lemma 2.8. (Bihari − type inequality) Let u, λ ∈ C(R+), w ∈
C((0,∞)) and w(u) be nondecreasing in u. Suppose that, for some
c > 0,

u(t) ≤ c+

∫ t

t0

λ(s)w(u(s))ds, t ≥ t0 ≥ 0.

Then

u(t) ≤W−1
[
W (c) +

∫ t
t0
λ(s)ds

]
, t0 ≤ t < b1,

where W (u) =
∫ u
u0

ds
w(s) , W

−1(u) is the inverse of W (u) and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t
t0
λ(s)ds ∈ domW−1

}
.

Lemma 2.9. [3] Let u, λ1, λ2, λ3, λ4, λ5, λ6 ∈ C(R+), w ∈ C((0,∞))
and w(u) be nondecreasing in u, u ≤ w(u). Suppose that for some c > 0,

u(t) ≤ c +

∫ t

t0

λ1(s)u(s)ds+

∫ t

t0

λ2(s)w(u(s))ds

+

∫ t

t0

λ3(s)

∫ s

t0

λ4(τ)u(τ)dτds

+

∫ t

t0

λ5(s)

∫ s

t0

λ6(τ)w(u(τ))dτds, 0 ≤ t0 ≤ t.

Then

u(t) ≤W−1
[
W (c) +

∫ t

t0

(λ1(s) + λ2(s)

+λ3(s)

∫ s

t0

λ4(τ)dτ + λ5(s)

∫ s

t0

λ6(τ)dτ)ds
]
,
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where t0 ≤ t < b1, W , W−1 are the same functions as in Lemma 2.8,
and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t

t0

(λ1(s) + λ2(s) + λ3(s)

∫ s

t0

λ4(τ)dτ

+ λ5(s)

∫ s

t0

λ6(τ)dτ)ds ∈ domW−1
}
.

Lemma 2.10. [4] Let u, λ1, λ2, λ3, λ4, λ5, λ6 ∈ C(R+), w ∈ C((0,∞))
and w(u) be nondecreasing in u, u ≤ w(u). Suppose that for some c > 0,

u(t) ≤ c +

∫ t

t0

λ1(s)u(s)ds+

∫ t

t0

λ2(s)w(u(s))ds

+

∫ t

t0

λ3(s)

∫ s

t0

λ4(τ)w(u(τ))dτds

+

∫ t

t0

λ5(s)

∫ s

t0

λ6(τ)w(u(τ))dτds, 0 ≤ t0 ≤ t.

Then

u(t) ≤W−1
[
W (c) +

∫ t
t0

(λ1(s) + λ2(s)

+λ3(s)
∫ s
t0
λ4(τ)dτ + λ5(s)

∫ s
t0
λ6(τ)dτ)ds

]
,

where t0 ≤ t < b1, W , W−1 are the same functions as in Lemma 2.8,
and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t

t0

(λ1(s) + λ2(s) + λ3(s)

∫ s

t0

λ4(τ)dτ

+ λ5(s)

∫ s

t0

λ6(τ)dτ)ds ∈ domW−1
}
.

Lemma 2.11. [11] Let u, λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8 ∈ C(R+), w ∈
C((0,∞)), and w(u) be nondecreasing in u, u ≤ w(u). Suppose that for
some c > 0 and 0 ≤ t0 ≤ t,

u(t) ≤ c +

∫ t

t0

λ1(s)w(u(s))ds+

∫ t

t0

λ2(s)

∫ s

t0

(λ3(τ)u(τ) + λ4(τ)w(u(τ))

+ λ5(τ)

∫ τ

t0

λ6(r)u(r)dr)dτds+

∫ t

t0

λ7(s)

∫ s

t0

λ8(τ)w(u(τ))dτds.
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Then

u(t) ≤W−1
[
W (c) +

∫ t

t0

(λ1(s) + λ2(s)

∫ s

t0

(λ3(τ) + λ4(τ)

+ λ5(τ)

∫ τ

t0

λ6(r)dr)dτ + λ7(s)

∫ s

t0

λ8(τ)dτ)ds
]
,

where t0 ≤ t < b1, W , W−1 are the same functions as in Lemma 2.8,
and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t

t0

(λ1(s) + λ2(s)

∫ s

t0

(λ3(τ) + λ4(τ)

+λ5(τ)

∫ τ

t0

λ6(r)dr)dτ + λ7(s)

∫ s

t0

λ8(τ)dτ)ds ∈ domW−1
}
.

Corollary 2.12. Let u, λ1, λ2, λ3, λ4, λ5, λ6 ∈ C(R+), w ∈ C((0,∞)),
and w(u) be nondecreasing in u, u ≤ w(u). Suppose that for some c > 0
and 0 ≤ t0 ≤ t,

u(t) ≤ c+
∫ t
t0
λ1(s)w(u(s))ds+

∫ t
t0
λ2(s)

∫ s
t0

(λ3(τ)u(τ) + λ4(τ)w(u(τ))

+λ5(τ)
∫ τ
t0
λ6(r)u(r)dr)dτds.

Then

u(t) ≤W−1
[
W (c) +

∫ t
t0

(λ1(s) + λ2(s)
∫ s
t0

(λ3(τ)

+λ4(τ) + λ5(τ)
∫ τ
t0
λ6(r)dr)dτ)ds

]
,

where t0 ≤ t < b1, W , W−1 are the same functions as in Lemma 2.8,
and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t
t0

(λ1(s) + λ2(s)
∫ s
t0

(λ3(τ) + λ4(τ)

+λ5(τ)
∫ τ
t0
λ6(r)dr)dτ ∈ domW−1

}
.

Lemma 2.13. [12] Let u, λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8 ∈ C(R+), w ∈
C((0,∞)), and w(u) be nondecreasing in u, u ≤ w(u). Suppose that for
some c > 0 and 0 ≤ t0 ≤ t,

u(t) ≤ c+
∫ t
t0
λ1(s)w(u(s))ds+

∫ t
t0
λ2(s)

∫ s
t0

(λ3(τ)u(τ) + λ4(τ)w(u(τ))

+λ5(τ)
∫ τ
t0
λ6(r)w(u(r))dr)dτds+

∫ t
t0
λ7(s)

∫ s
t0
λ8(τ)w(u(τ))dτds.
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Then

u(t) ≤W−1
[
W (c) +

∫ t
t0

(λ1(s) + λ2(s)
∫ s
t0

(λ3(τ) + λ4(τ)

+λ5(τ)
∫ τ
t0
λ6(r)dr)dτ + λ7(s)

∫ s
t0
λ8(τ)dτ)ds

]
,

where t0 ≤ t < b1, W , W−1 are the same functions as in Lemma 2.8,
and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t
t0

(λ1(s) + λ2(s)
∫ s
t0

(λ3(τ) + λ4(τ)

+λ5(τ)
∫ τ
t0
λ6(r)dr)dτ + λ7(s)

∫ s
t0
λ8(τ)dτ)ds ∈ domW−1

}
.

Corollary 2.14. Let u, λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8 ∈ C(R+), w ∈
C((0,∞)), and w(u) be nondecreasing in u, u ≤ w(u). Suppose that for
some c > 0 and 0 ≤ t0 ≤ t,

u(t) ≤ c+
∫ t
t0
λ1(s)w(u(s))ds+

∫ t
t0
λ2(s)

∫ s
t0

(λ3(τ)u(τ)

+λ4(τ)w(u(τ)) + λ5(τ)
∫ τ
t0
λ6(r)w(u(r))dr)dτds.

Then

u(t) ≤W−1
[
W (c) +

∫ t
t0

(λ1(s) + λ2(s)
∫ s
t0

(λ3(τ)

+λ4(τ) + λ5(τ)
∫ τ
t0
λ6(r)dr)dτ

]
,

where t0 ≤ t < b1, W , W−1 are the same functions as in Lemma 2.8,
and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t
t0

(λ1(s) + λ2(s)
∫ s
t0

(λ3(τ)

+λ4(τ) + λ5(τ)
∫ τ
t0
λ6(r)dr)dτ ∈ domW−1

}
.

3. Main results

In this section, we investigate boundedness for solutions of the non-
linear perturbed differential systems via t∞-similarity.

To obtain the bounded result, the following assumptions are needed:
(H1 ) fx(t, 0) is t∞-similar to fx(t, x(t, t0, x0)) for t ≥ t0 ≥ 0 and

|x0| ≤ δ for some constant δ > 0.
(H2 ) The solution x = 0 of (1.1) is hS with the increasing function

h.
(H3 ) w(u) be nondecreasing in u such that u ≤ w(u) and 1

vw(u) ≤
w(uv ) for some v > 0.
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Theorem 3.1. Let a, b, c, d, k ∈ C(R+). Suppose that (H1), (H2),
(H3) and g in (2.1) satisfies

|g(t, y, T1y)| ≤ a(t)|y(t)|+ b(t)w(|y(t)|) + |T1y(t)|,(3.1)

|T1y(t)| ≤ b(t)

∫ t

t0

k(s)w(|y(s)|)ds

and

|h(t, y(t), T2y(t))| ≤
∫ t

t0

c(s)|y(s)|ds+ |T2y(t)|,(3.2)

|T2y(t)| ≤ d(t)w(|y(t)|),

where a, b, c, d, k, w ∈ L1(R+), w ∈ C((0,∞)), T1, T2 are continuous
operators. Then, any solution y(t) = y(t, t0, y0) of (2.1) is bounded on
on [t0,∞) and it satisfies

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t
t0

[d(s) +
∫ s
t0

(a(τ) + b(τ) + c(τ)

+b(τ)
∫ τ
t0
k(r)dr)dτ ]ds

]
,

where W , W−1 are the same functions as in Lemma 2.8, and

b1 = sup
{
t ≥ t0 : W (c) + c2

∫ t
t0

[d(s) +
∫ s
t0

(a(τ) + b(τ) + c(τ)

+b(τ)
∫ τ
t0
k(r)dr)dτ ]ds ∈ domW−1

}
.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of
(2.2) and (2.1), respectively. By Theorem 2.6, since the solution x = 0
of (2.2) is hS, the solution v = 0 of (2.3) is hS. Therefore, from (H1 ), by
Theorem 2.7, the solution z = 0 of (2.4) is hS. Applying the nonlinear
variation of constants formula due to Lemma 2.5, Lemma 2.4 together
with (3.1) and (3.2), we have

|y(t)| ≤ |x(t)|+
∫ t
t0
|Φ(t, s, y(s))|

( ∫ s
t0
|g(τ, y(τ), T1y(τ))|dτ

+|h(s, y(s), T2y(s))|
)
ds

≤ c1|y0|h(t)h(t0)
−1 +

∫ t
t0
c2h(t)h(s)−1

(
d(s)w(|y(s)|)

+
∫ s
t0

((a(τ) + c(τ))|y(τ)|+ b(τ)w(|y(τ)|)

+b(τ)
∫ τ
t0
k(r)w(|y(r)|)dr)dτ

)
ds.
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By the assumptions (H2 ) and (H3 ), we obtain

|y(t)| ≤ c1|y0|h(t)h(t0)
−1 +

∫ t
t0
c2h(t)

(
d(s)w( |y(s)|h(s) )

+
∫ s
t0

((a(τ) + c(τ)) |y(τ)|h(τ) + b(τ)w( |y(τ)|h(τ) )

+b(τ)
∫ τ
t0
k(r)w( |y(r)|h(r) )dr)dτ

)
ds.

Set u(t) = |y(t)|h(t)−1. Then, by Corollary 2.14, we have

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t
t0

[d(s) +
∫ s
t0

(a(τ) + b(τ) + c(τ)

+b(τ)
∫ τ
t0
k(r)dr)dτ ]ds

]
where c = c1|y0|h(t0)

−1. The above estimation yields the desired result
since the function h is bounded, and so the proof is complete.

Remark 3.2. Letting c(t) = d(t) = 0 in Theorem 3.1, we obtain the
same result as that of Theorem 3.5 in [10].

Theorem 3.3. Let a, b, c, d, k, q ∈ C(R+). Suppose that (H1), (H2),
(H3), and g in (2.1) satisfies∫ t

t0
|g(s, y(s), T1y(s))|ds ≤ a(t)|y(t)|+ b(t)w(|y(t)|) + |T1y(t)|,(3.3)

|T1y(t)| ≤ b(t)
∫ t
t0
k(s)|y(s)|ds

and

|h(t, y(t), T2y(t))| ≤ b(t)
∫ t
t0
c(s)|y(s)|ds+ |T2y(t)|,(3.4)

|T2y(t)| ≤ d(t)
∫ t
t0
q(s)w(|y(s)|)ds

where a, b, c, d, k, q, w ∈ L1(R+), w ∈ C((0,∞)), T1, T2 are continuous
operators. Then, any solution y(t) = y(t, t0, y0) of (2.1) is bounded on
[t0,∞) and it satisfies

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t
t0

(a(s) + b(s) + c(s)

+b(s)
∫ s
t0
k(τ)dτ + d(s)

∫ s
t0
q(τ)dτ)ds

]
,

where t0 ≤ t < b1, W , W−1 are the same functions as in Lemma 2.8,
and

b1 = sup
{
t ≥ t0 : W (c) + c2

∫ t
t0

(a(s) + b(s) + c(s)

+b(s)
∫ s
t0
k(τ)dτ + d(s)

∫ s
t0
q(τ)dτ)ds ∈ domW−1

}
.
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Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of
(2.2) and (2.1), respectively. By the same argument as in the proof in
Theorem 3.1, the solution z = 0 of (2.4) is hS. Using Lemma 2.4, the
nonlinear variation of constants formula due to Lemma 2.5, together
with (3.3) and (3.4), we have

|y(t)| ≤ c1|y0|h(t)h(t0)
−1 +

∫ t
t0
c2h(t)h(s)−1

(
a(s)|y(s)|+ b(s)w(|y(s)|)

+b(s)
∫ s
t0

(c(τ) + k(τ))|y(τ)|dτ + d(s)
∫ s
t0
q(τ)w(|y(τ)|)dτ

)
ds.

It follows from (H2 ) and (H3 ) that

|y(t)| ≤ c1|y0|h(t)h(t0)
−1 +

∫ t
t0
c2h(t)

(
a(s) |y(s)|h(s) + b(s)w( |y(s)|h(s) )

+b(s)
∫ s
t0

(c(τ) + k(τ)) |y(τ)|h(τ) dτ + d(s)
∫ s
t0
q(τ)w( |y(τ)|h(τ) )dτ

)
ds.

Set u(t) = |y(t)|h(t)−1. Then, by Lemma 2.9, we have

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t
t0

[a(s) + b(s) + c(s)

+b(s)
∫ s
t0
k(τ)dτ + d(s)

∫ s
t0
q(τ)dτ ]ds

]
,

where c = c1|y0|h(t)h(t0)
−1. Thus, any solution y(t) = y(t, t0, y0) of

(1.2) is bounded on [t0,∞), and so the proof is complete.

Remark 3.4. Letting c(t) = d(t) = 0 in Theorem 3.3, we obtain the
same result as that of Theorem 3.3 in [10].

Theorem 3.5. Let a, b, c, d, k ∈ C(R+). Suppose that (H1), (H2),
(H3), and g in (2.1) satisfies

|g(t, y, T1y)| ≤ a(t)|y(t)|+ b(t)w(|y(t)|) + |T1y(t)|,(3.5)

|T1y(t)| ≤ b(t)

∫ t

t0

k(s)|y(s)|ds

and

|h(t, y(t), T2y(t))| ≤
∫ t

t0

c(s)|y(s)|ds+ |T2y(t)|,(3.6)

|T2y(t)| ≤ d(t)w(|y(t)|),

where a, b, c, d, k, w ∈ L1(R+), w ∈ C((0,∞)), T1, T2 are continuous
operators. Then, any solution y(t) = y(t, t0, y0) of (2.1) is bounded on
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on [t0,∞) and it satisfies

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t
t0

[
∫ s
t0

(a(τ) + b(τ)

+b(τ)
∫ τ
t0
k(r)dr)dτ + d(s)

∫ τ
t0
q(τ)dτ ]ds

]
,

where W , W−1 are the same functions as in Lemma 2.8, and

b1 = sup
{
t ≥ t0 : W (c) + c2

∫ t
t0

[
∫ s
t0

(a(τ) + b(τ) + c(τ)

+b(τ)
∫ τ
t0
k(r)dr)dτ + c(s)

∫ τ
t0
q(τ)dτ ]ds ∈ domW−1

}
.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of
(2.2) and (2.1), respectively. By the same argument as in the proof in
Theorem 3.1, the solution z = 0 of (2.4) is hS. Applying Lemma 2.4,
the nonlinear variation of constants formula due to Lemma 2.5, together
with (3.5) and (3.6), we have

|y(t)| ≤ |x(t)|+
∫ t
t0
|Φ(t, s, y(s))|(

∫ s
t0
|g(τ, y(τ), T1y(s))|dτ

+|h(s, y(s), T2y(s))|)ds

≤ c1|y0|h(t)h(t0)
−1 +

∫ t
t0
c2h(t)h(s)−1

(
d(s)w(|y(s)|)

+
∫ s
t0

((a(τ) + c(τ))|y(τ)|+ b(τ)w(|y(τ)|)

+b(τ)
∫ τ
t0
k(r)|y(r)|dr)dτ

)
ds.

By the assumptions (H2) and (H3), we obtain

|y(t)| ≤ c1|y0|h(t)h(t0)
−1 +

∫ t
t0
c2h(t)

(
d(s)w( |y(s)|h(s) )

+b(τ)w( |y(τ)|h(τ) ) +
∫ s
t0

((a(τ) + c(τ)) |y(τ)|h(τ)

+b(τ)
∫ τ
t0
k(r) |y(r)|h(r) dr)dτ

)
ds.

Set u(t) = |y(t)|h(t)−1. Then, by Corollary 2.12, we have

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t
t0

[
∫ s
t0

(a(τ) + b(τ) + c(τ)

+b(τ)
∫ τ
t0
k(r)dr)dτ + d(s)

∫ τ
t0
q(τ)dτ ]ds

]
where c = c1|y0|h(t0)

−1. The above estimation yields the desired result
since the function h is bounded, and so the proof is complete.

Remark 3.6. Letting c(t) = d(t) = 0 in Theorem 3.5, we obtain the
same result as that of Theorem 3.1 in [10].
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Theorem 3.7. Let a, b, c, d, k, q ∈ C(R+). Suppose that (H1), (H2),
(H3), and g in (2.1) satisfies∫ t

t0

|g(s, y(s), T1y(s))|ds ≤ a(t)|y(t)|+ b(t)w(|y(t)|) + |T1y(t)|,(3.7)

|T1y(t)| ≤ b(t)

∫ t

t0

k(s)w(|y(s)|)ds

and

|h(t, y(t), T2y(t))| ≤ c(t)

∫ t

t0

q(s)w(|y(s)|)ds+ |T2y(t)|,(3.8)

|T2y(t)| ≤ d(t)w(|y(t)|)

where a, b, c, d, k, q, w ∈ L1(R+), w ∈ C((0,∞)), T1, T2 are continuous
operators. Then, any solution y(t) = y(t, t0, y0) of (2.1) is bounded on
[t0,∞) and it satisfies

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t
t0

(a(s) + b(s) + c(s)

+b(s)
∫ s
t0
k(τ)dτ + d(s)

∫ s
t0
q(τ)dτ)ds

]
,

where t0 ≤ t < b1, W , W−1 are the same functions as in Lemma 2.8,
and

b1 = sup
{
t ≥ t0 : W (c) + c2

∫ t
t0

(a(s) + b(s) + c(s)

+b(s)
∫ s
t0
k(τ)dτ + d(s)

∫ s
t0
q(τ)dτ)ds ∈ domW−1

}
.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of
(2.2) and (2.1), respectively. By the same argument as in the proof in
Theorem 2.2, the solution z = 0 of (2.4) is hS. Using Lemma 2.4, the
nonlinear variation of constants formula due to Lemma 2.5, together
with (3.7) and (3.8), we have

|y(t)| ≤ c1|y0|h(t)h(t0)
−1 +

∫ t
t0
c2h(t)h(s)−1

(
a(s)|y(s)|

+(b(s) + d(s))w(|y(s)|) + b(s)
∫ s
t0
k(τ)w(|y(τ)|)dτ

+c(s)
∫ s
t0
q(τ)w(|y(τ)|)dτ

)
ds.
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It follows from (H2) and (H3) that

|y(t)| ≤ c1|y0|h(t)h(t0)
−1 +

∫ t
t0
c2h(t)

(
a(s) |y(s)|h(s)

+(b(s) + d(s))w( |y(s)|h(s) ) + b(s)
∫ s
t0
k(τ)w( |y(τ)|h(τ) )dτ

+c(s)
∫ s
t0
q(τ)w( |y(τ)|h(τ) )dτ

)
ds.

Set u(t) = |y(t)|h(t)−1. Then, by Lemma 2.10, we have

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t
t0

[a(s) + b(s) + c(s)

+b(s)
∫ s
t0
k(τ)dτ + d(s)

∫ s
t0
q(τ)dτ ]ds

]
,

where c = c1|y0|h(t)h(t0)
−1. Thus, any solution y(t) = y(t, t0, y0) of

(1.2) is bounded on [t0,∞), and so the proof is complete.

Remark 3.8. Letting c(t) = d(t) = 0 in Theorem 3.7, we obtain the
same result as that of Theorem 3.7 in [10].
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