J. Korean Math. Soc. 32 (1995), No. 4, pp. 725-737

A CENTRAL LIMIT THEOREM FOR
SOJOURN TIME OF STRONGLY DEPENDENT
2-DIMENSIONAL GAUSSIAN PROCESS

TAE IL JEON

1. Introduction

Let X; = (Xt(l),Xt(z))',t 2 0, be a real stationary 2-dimensional
Gaussian process with EX,m = EXtm = (0 and

[ r(t) p(t)
exixi= (0 101 )

where r(t) ~ [t|7%,0 < a < 1/2,p(t) = o(r(t)) as t — oo,r(0) = 1,
and p(0) =p (0 < p<1). Fort>0,u>0,and v > 0, let L,(u.v) be
the time spent by X,,0 < s < ¢, above the level (u,v). In other words
L(u,v) be the time spent by X, in the region {(z,y)| z > u, y > v}.
Let u = u(t),v = v(t) be increasing functions at a sufficiently slow rate.
Note that r(t) is nonnegative for all ¢ and tends to 0 as |t| approaches
infinity. If the assumptions stated above hold, then L,(u,v), upon
appropriate normalization, has a limiting normal distribution.

For the case of one-dimensional process X; with a sufficiently slow
correlation function r(¢), Berman [1] and Maejima [6,and 7] have for-
mulated central limit theorems for the high level sojourn. For given
multi-dimensional stationary Gaussian processes with long-range de-
pendence, Berman [2] and Maejima [8] have treated the limiting be-
havior of the time spent by those processes in some particular domains
in multi-dimensional spaces. They have formulated non-central limit
theorems which have been characterized in terms of Rosenblatt distri-
bution.
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Many authors [3.4.5,9, and 10] have investigated the limiting be-
havior of non-linear functionals of stationary Gaussian processes with
long-range dependence. The functionals used in the previously men-
tioned papers are more general than sojourn functionals even they
should satisfy some other conditions. Not many papers appeared in
the study of limiting distributions for 2-dimensional processes because
of the complexity of computation caused by the effect of cross correla-
tion functions when we allow the long-range dependence in the process.

The basic idea in the proof of the main result of this paper is similar
to that in the early papers [1 and 3]. But the conditions of correlation
functions are quite different fromn that in those papers. The diagram
formula is used in computation of expectations for the product of Her-
mite polynomials of vector process.

2. Results
Let f(z,y) be a real valued function such that

flry)p(x.y)dedy = 0,
(1) flz, y) o(r, y)drdy < oo,

Joo &

where ¢(z,y) is the bivariate standard normal density function. Then,
as is well known. f has an expansion with respect to the Hermite
polynomials with leading coefficients 1. Hermite polynomials of two
variables are defined by

2 + yz) a|m|

Hop(z,y) = (_])Iml CXP(I > aT"llay’"z exp(x“'—’ 5 )"

where m = (m,my), and |m| = m; + my.
By the argument above, f has the expression

i( S emBm(z,9),

=0 mi=;
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with

im= [ [ H bl ), y)dedy

Let X, = (Xt(l),X,m),t 2 0, be a stationary vector Gaussian pro-
cess with EX{" = EX!” = 0 and EX"X{, = r(s), i=1,2, EX®
Xt(i)s = p(s),(2,7) = (1,2) or (2,1) for all ¢,n. Without loss of gener-
ality we may assume r(0) = 1, p(0) = 0.

Let Li(u,v) be the time spent by X,,0 < s < ¢, above the level
(u,v), which means the domain {(z,y) € R*| z > u, y > v}. Then
L(u,v) has the following expression

¢
Le(u,v) :/ XY >u, X% > vlds,
0
where [ is the indicator function. As is customary, we write
o0
/ Hx)dr =1 — &(u),
u

where ¢(z) is the standard normal density function. Since f(r,y) =
I[z > u,y > v] satisfies (1) it has the Hermite expansion
(2)  flz,y)=[1-2w)]l - 2(v)]

+ {o(u)[l — @(v)]Hi(z) + [1 - ®(w)]é(v)Hi(y)}

+Z Z B(my,u)B(ma, v)Hpm () Hpm,(y),

1=2 {ml=j
where
1—&(w), ifk=0
3) Bkw) ={ | . |
wHe(w)e(w) 1<k <y
It follows from (2) that
(4)

Ly(u,v) = /0 f(X)ds =1 — ®(u)][1 - ®(v)]t
+@(w[l - &(v) / Hy(XV)ds +[1 ~ @(u)]é(v) / Hi(XP)ds
0 0

o t
+30) B(ml,u)B(mz,v)/o Hop (X)) H (X2 ds.
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We introduce a diagram formula. In order to set up the formula
we need some preliminaries. We call an undirected graph G with

'_1( + 13) vertices a diagram of order I = (I*,1%,... ,1P), where
U= (l{,lg) for j = 1,...,p, if it satisfies the following three condi-
tions:

[i] The set of vertices V' of the graph G has the form

V =

J

p
S;.
=1

where

S;=LlulLl,
Li={2j-1Ln)|1<n< Y},
Li={(2jn)|1<n< )},

7=1,....p.

(define L3 = @ for 1 = 0,k = 1,2) We call S, the sector j of the graph
G, L{ the level (25 — 1) of the graph G, and L} the level (27) of the
graph G.

[ii] Every vertex is of degree 1.

[iii] Edges may pass only between different sectors, in other words,
no edge passes between levels L} and L], for j = 1,... ,p.

Let ' =T(l) = I'(I',... ,I7) denote the set of diagrams with proper-
ties [i],[ii] and [ili] above. Given a graph G € T let V(G) be the set of all
edges of G and let V(L] L?), 41,12 = 1,2; j1,j2 = 1,... , p be the set
of all edges pass between levels Lf; and L{; fwe VG(LfI‘,Lf; ). then
define dy(w) = j; and dy(w) = j3. Define kg(7) = {w € G | di(w) =
7} Indeed k¢;(j) is the cardinality of the set of edges w € V(G) which
begin at the sector j and end at sectors of indices higher than j. We
state the diagram formula for random vectors without proof. See [9]
for the detail.

LEMMA 1 (DIAGRAM FORMULA). Let (X,,...,Xy,),p 2 2, be
such that X, = (Xt(..l),X,(?)).i = 1,...,p are jointly normal and for
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eacht,s,€ {t1,... ,t,}, EXV = EX =0, E(XV)? = B(x!?y?
1, EX,(I)Xt(z) =0, E'Xt(’ XSJ) =ri(s—1),1,7 = 1,2. Then we have

P
E([[HcxP.x2) = 3 [I ultawr - tawr):
i=1 '

Gel(l) weV(G)
where u(ty, (v) — tayw) = Tt —t,) fw € Vg (L]l I.“) and l =
(@, ...0r).

Note that the 2-dimensional Hermite polynomial of order (m;, m3)
can be expressed as a product of one-dimensional Hermite polynomials
of order m; and my;

Hm(l', y) = H(ml,mg)(‘r~y) = Hml('T)Hmz(y)'

As a special case of the diagram formula, p = 2, we have
(5) E | Hom(XV X Ha(XN, X?)| =0,

if [m| # |n|, because there is no diagram between two sectors with
different numbers of vertices. The property (11) is called the orthogo-
nality of Hermite polynomials. By Lemma 1 we have

i
E{/ Hm,(_.Xg”)Hmz(Xg?))ds} =0,
0

Z /Hml(X(l) mz(X(Z))}

[m|=j

min{mi,ny)

_ Z Z milmalng!Ing!
B ki ny — B)l(my — k) ng — my + k)

|m|=|n|=5 k=maz(0,m —ny)

t pt
X / / r"Q‘"“Hk(sl —sg)p™ 1L"‘—Zk(sl — 89)dsqds,,
0o Jo
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and

i t
(1) (2)) 76 (1) (2)) g5\ —
) E{/O Ho (X)) Hpm, (X )db/0 Ho (X H, (X! )ds} 0
if jm| # |n|.

Since the Hermite polynomial H,(r) = x, we may rewrite (4) by
(7)) Ly(u,v) —[1 — ®(u)][l — ®(v)]t

= ¢(u)[l - @(v)]/ Xgl)ds +[1 - (I)(u)](ﬁ(v)/:Xs(z)ds

0

oc t
+3° S B(my.uw)Blma,v) / Hop, (X ) Hony (X)) ds.

=2 |ml=;

Let us compute the variance of Ly(u,v)

Var[Lyu,v)] = A(u,v) + Z Z Bo(m,n,u,v)
i=2 |m|=|n|=;

min(mi,n; )} | e )
RSB UYRIABIYVE

8 2 Fl(ny — K)(my — k)l(ng — my + k)

k=max(0,m; —ny)

t gt
X / / przmmitk(g .sz)pm‘+"1‘2k(sl — 8,)ds ds,,
o Jo

where

Ay(u,v) :2{q52(u)[1 - <I>(v)]2/ (t —s)r(s)ds

+26(u)[1 - B(v)][1 — B(u))$(v) / (t — s)p(s)ds
+1-8(') [ (= a)r(spds )

and

Bo(m,n,u,v) = B(my,u)B(mg,v)B(ny,u)B(na,v).
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Here B(k,w) satisfies (3), for instance,

BO((Ovj)v (]7 0), u, U)
1

:(]'})2 1 —@(u)H;_1(v)p(v)Hj_1(n)d(u)[1 — ®(v)].
Let, for the simplicity,
(8) t
Al(u,v) = {[1 = ®(u)]*6%(») 2(u)[1 - ®(v))? b — s)r{s)ds.
(0.0 = {[1 = (6% + 2t = 0} [ (¢ = ()

Then we have
A, ) = 244(0.0) + 40(u) 1 = B[ = Blu)lole) [ (¢ = pls)d.
0

Consider a new process

L{u.v)—[1—-®u)jll- <I>(v)]t'

Filwv) = FUORE

We formulate the following main result.

THEOREM 1. Let X, = (Xt“),Xt(Q))',t 22 0, be a real stationary
2-dimensional Gaussian process with EX t(l) = EX,(Z) =0 and

a_ [ r(t) p(t)
EXoX! = (p 0 )

where 7(t) ~ [t|7%,0 < a < 1/2,p(t) < r(t), p(t) = o(r(?)) as |t| —
00,7(0) = 1,and p(0) = p (0 < p< 1). and u = u(t) ~ t3/% v = v(t) ~
P12 for 0 < B8 < a. Let Ly(u,v) be the time spent by X,,0 < s € 1.
above the level (u,v). Then

Yi(u,v) —2 N(0,1).

d e .
where — means convergence in distribution and N'(0, 1) is the standard
normal random variable.
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Proof. Rewriting Y {u,v). we have
s(w)1 = (v)] [y XSV ds +[1 - @(u)]o(v) f; X:Vds
Ay(u,v)1/2

N 32 Y imi=y Blmi,w)B(ma.v) [ Hp (XIH o (X ds
A(u,v)H/? ’

Ye(u,v) =

And
Var(Y:(u,v))

<¢(u)[l - o(v)] i X Hds +[1 - ®(w)]e(v) [, X_E,”ds‘)

=V
o Aclw, )1 72

/

o var | Bz Eimi= B(m1,w)B(ma.v) fy Hmy (X3 Hiny (XS”)ds
Agu, v)1/?

i var [ E22 B B(m1,u)B(mz,v) ff Hmy (X)) Hony (XE)ds
ar .
At(wv)”?

by the orthogonality conditon (6).

LEMMA 2.

o [ E522 X jmizy Blmi w)B(ma,v) fy Hony (X{) Hony (X)) ds
ar
At(uv U)l/z

__.._.,0
ast — oo,

We prove Theorem 1 first using Lemma 2 and leave the proof of
Lemma 2 to the section 3. By Lemma 2, Var(Y;(u,v)) — 1 ast — oc.
Referring to the expression (7), we may conclude that Yy(u,v) and

d(u)[l — ®(v)] f(: xWds + [1 - ®(u)jé(v) fot X @y
At(u,v)1/2

have the same limiting distribution as t tends to oo. Therefore the
proof of the theorem is completed. Now it remains to prove Lemma 2.
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3. Proof

In this section we prove Lemma 2. It is equivalent to show that

By(m.n,u,v)
tll’n;o]zgl IZjI At(u’v)
m|=|n|=j

manm ) mylmalnging!
1-M2:n1Ny:

8 2. H(ny = K)(my = K)(nz — m; + £

k=maz(d,m, —ng)

t t
x / / r"z_m’+2k(31 = 32)pm1+n1—2k(sl _ Sg)dSldSQ — 0’
0 JO

where

(10) u—-u()fvt*’/r", v =v(t) mtﬁ/2 0< B8«

Here we note that the increasing speeds of u(t) and v(¢) are asymp-

totically the same. Since p(s) < r(s} and p(s) = o(r(s)), p(s1 — 52) <
r(81 — s2). Therefore

(1

X

t pt ’
1) / / T'nz-ml+2k(51 — .Qz)pm]+nl Zk & - Sz)dgld32
0 0

t t
< / / rng——m1+2k+m1+n1 —2k(Sl i Sz)db‘]dSz
0 Jo

t ot t
— / / rj(s] — sz)ds1dsz = 2/ (t — .s)rj(s)ds.
0o Jo

Also, since [1 — ®(u)]¢( u)[1—®(v)] fo p(s)ds > 0, we have

Bo(m,n,u,v) < By(m,n,u,v)
Ay(u,v) 245(u v)

By (11) the term in (9) is bounded by

> Bo(m,n,u,v)
Z Z Al(u,v)

=2 |m|=|n|=;

min(miy ,ny) s o s o)
1imoinying!

Z k‘(nl — k‘)'(ml — k)'(n2 —my + k)' [) (t—S)TJ(S)d57

k=maz(0,m; —njy)
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which can be expressed as an asymptotically equivalent term, when we
replace Aj(u,v) by (8), as like
(12)
i > Bj(m,n, u, o)t~ (my + ma)!
(1= @) o2(v) + 62wl = (v)]° miimainalng!

N

I=2|m|=|n|=)

where Bj(m,n,u,v) = milmalnilny!Bo(m,n,u,v) and (12) can be
obtained from the following (13) and (14).

fot(t —8)ri(s)ds ~4~G-Da

(13
) fot(z‘ — s)r(s)ds
and
(14)
min(my.m) 1 (i + my)!
Z k'(nl—-k)'(ml—k)'(nz——ml—i—k‘)' - ml!m2!n1!n2!'

k=mazr{0,my;—ns)
It is not hard to show the following

1 ]l Tl (11 1 |2)v< 7911 when j = |m| = [n],
myimginging! my-Mma.NyNa- /2]

where [p] is the interger part of p. Thus (12} is bounded by

i~ Da

= By(m.n,u,v)t ™
19 4T 2 T atPern + el G

LEMMA 3. For given e > 0, there exists a real number T > 0 such

that '
B(’)(m, n,u, u)t—(J«l)a

[1— ®(u)®62(v) + ¢2(u)(1 — &(v)]?
fort > T and for all j > 2.

< €

Proof. First note that we still assume the condition (10). To prove
Lemma 3 we consider three cases for Bj. Let B'(k,w) = k!B(k,w).
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Case 1. By(m,n,u,v) = B'(0,u)B'(j,v)B'(0,u)B'(j,v). Then

Bj(m,n,u,v)t~0U-De
(1= @(u)]*¢%(v) + 62(u)[1 — &(v)]*
[1 = @(w)]H,_1(1)g(v)[1 — S(w)]H;_1(v)d(v)t=C—De
[1— ®(uw)?¢2(v) + ¢2(u)[1 — B(v))”
[1— ®(u))*H2_ | (v)$?*(v)t~ 0~V
[1— ®(w)]*¢2(v) + ¢2(u)[1 — &(2)]?
[1— @(t8/2)) g2(t4/2) H2_ (18/2)4=i— Ve
21 — B(t8/2)]"62(t6/2)
(tﬂ/Z)t~(1—1)0/2

(16)

o 2
= H?,

1 ; e -
— E{tﬂ(.?-l)t—(]—l)u+O(t(ﬂ—0)(1—11)}
1 : .
= §{t(ﬂ—a)(1~1)+o(t(ﬁ—a)(1—l))}

the last term in (16) converges to 0 as t tends to oo.
CASE 2. B{(m,n,u,v) = B'(0,u)B'(j,v)B'(n1,u)B'(ns,v),
(17)
Bi(m,n,u, v)t— =1
[1 = @(w)}*92(v) + ¢2 ()1 — 2(v)]?

[1 = ®(tP/2) H; 1 (tP/2)p(t7 /2 ) Hony —1 (8P 2) Hyy 1 (£972) (2P /2)t~ (G~ 1)
201 — B(t8/2))7 92(8/2)

¢(t5/2)H,-_1(tﬁ/2)Hnl_l(tﬂ/Z)an_l(tﬁ/z)t’(1‘1)"
2[1 — ®(18/2))

(1/vZm)e=t" 12(18/2)2 =34 (i~
B 2.[:%0/? ¢(S)d3

1 t(B—a)(i—~1)
_2 o ft%o/2¢(s)ds/t—-ﬂ/2e—tﬂ/2

Simple computation reveals that the limit of the denominator of the
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last term in (17) is a finite number. Therefore the last term in (17)
converges to 0 as t tends to oo.

CAsSE 3. Bi(m,n,u,v) = B'(m,u)B'(mq,v) - B'(ny1,u)B'(ny,v),

Bi(m,n,u,v)t--De
[1 = @()]*62(v) + 62(u)[1 - @(v))*
_<152(U)¢2(U)Hm1 1(u )Hmz—l(v)Hnl—I(U)an—l(v)t—(j_l)a
- 1 - @(u)62(v) + 62(w)[1 — B(v)]*
By assumption we may express (18) asymptotically using ¢*(u) =
(1/2m)e=" ~ (1/2m)e="  $2(v) = (1/27)e™"" ~ (1/2r)e" .

1—&(u) = / o(s)ds ~ o(s)ds,
u thl2

(18)

and

Hrn1—I(U)Hrng—l(v)Hm—I(U)an—-l(?’)

um1+n1—2vm2+n2—2 + O(um1+n1 ——2vm2+n2—2)

t(ﬁ/Z)(ml"rnl ~2)t(ﬁ/2)(m2+"2—2) + O(Uml +n -—2”m2+n2-2)

t(ﬂ/2)(2j—4) + O(uml +711—2vm2+"2—2)

= tAU-D O(“m1+n1—2vmg+n2~2).
The first term in (18) resulted in by the substitution is
1 e—tP4=B4(B-a)(y-1)
ar ([, #(s)ds]?

The following is not hard to show. Indeed, we may use the L'Hospital’s
Rule to find the finite limit.

Uiz 0ls)ds? 1 L (B=a)(i—1)
1 ——— e — - = (.
(19) tlls\oo ,—tﬁf d o tll»nalot
Therefore
1 e—t74-B4(B-a)G-1) B

lim —
]

t—oo 41 [f;,o/z o(s)ds]?
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Since the left side in (18) converges to (}, so does the rest of the
terms.
The other cases are the same to one of the three cases above. Therefore
we have completed the proof of Lemma 3.

Note that Lemma 3 holds uniformly on the integers j > 2. Therefore
(15) is bounded by

(20) de f: Q—ii)—i

when ¢ is sufficiently large. But the series in (20) converges to a finite
number. This completes the proof of Lemma 2.
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