BOUNDEDNESS IN FUNCTIONAL PERTURBED DIFFERENTIAL SYSTEMS VIA t_{∞}-SIMILARITY

Dong Man Im*, Sang Il Choi**, and Yoon Hoe Goo***

Abstract. This paper shows that the solutions to the perturbed differential system

$$
y^{\prime}=f(t, y)+\int_{t_{0}}^{t} g\left(s, y(s), T_{1} y(s)\right) d s+h\left(t, y(t), T_{2} y(t)\right)
$$

have bounded properties by imposing conditions on the perturbed part $\int_{t_{0}}^{t} g\left(s, y(s), T_{1} y(s)\right) d s, h\left(t, y(t), T_{2} y(t)\right)$, and on the fundamental matrix of the unperturbed system $y^{\prime}=f(t, y)$ using the notion of h-stability.

1. Introduction and preliminaries

The papers [2-6,8-11,14-17] discuss boundedness, perturbations, stability, and h-stability of nonlinear systems of differential equations,

$$
\begin{equation*}
x^{\prime}(t)=f(t, x(t)), \quad x\left(t_{0}\right)=x_{0} . \tag{1.1}
\end{equation*}
$$

It is interesting and worthwhile to investigate the bounded perporty for the solutions of the perturbed type of (1.1)

$$
\begin{equation*}
y^{\prime}=f(t, y)+\int_{t_{0}}^{t} g\left(s, y(s), T_{1} y(s)\right) d s+h\left(t, y(t), T_{2} y(t)\right), y\left(t_{0}\right)=y_{0} \tag{1.2}
\end{equation*}
$$

where $f \in C\left(\mathbb{R}^{+} \times \mathbb{R}^{n}, \mathbb{R}^{n}\right), g, h \in C\left(\mathbb{R}^{+} \times \mathbb{R}^{n} \times \mathbb{R}^{n}, \mathbb{R}^{n}\right), \mathbb{R}^{+}=[0, \infty)$, $f(t, 0)=0, g(t, 0,0)=h(t, 0,0)=0$, and $T_{1}, T_{2}: C\left(\mathbb{R}^{+}, \mathbb{R}^{n}\right) \rightarrow C\left(\mathbb{R}^{+}, \mathbb{R}^{n}\right)$ are continuous operators and \mathbb{R}^{n} is an n-dimensional Euclidean space.

The notion of h-stability (hS) was introduced by Pinto $[16,17]$ with the intention of obtaining results about stability for a weakly stable system (at least, weaker than those given exponential asymptotic stability)

[^0]under some perturbations. That is, Pinto extended the study of exponential asymptotic stability to a variety of reasonable systems called h-systems. Pachpatte $[14,15]$ investigated the stability, boundedness, and the asymptotic behavior of the solutions of perturbed nonlinear systems under some suitable conditions on the perturbation term g and on the operator T. Choi and Ryu [6] and Choi et al. [7] investigated h stability of solutions for nonlinear perturbed systems. Also, Goo [9, 10] and Goo et al. [3] studied the boundedness of solutions for the perturbed differential systems.

We always assume that the Jacobian matrix $f_{x}=\partial f / \partial x$ exists and is continuous on $\mathbb{R}^{+} \times \mathbb{R}^{n}$. The symbol $|\cdot|$ will be used to denote any convenient vector norm in \mathbb{R}^{n}. Let $x\left(t, t_{0}, x_{0}\right)$ denote the unique solution of (1.1) with $x\left(t_{0}, t_{0}, x_{0}\right)=x_{0}$, existing on $\left[t_{0}, \infty\right)$. Then, we can consider the associated variational systems around the zero solution of (1.1) and around $x(t)$, respectively,

$$
\begin{equation*}
v^{\prime}(t)=f_{x}(t, 0) v(t), v\left(t_{0}\right)=v_{0} \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
z^{\prime}(t)=f_{x}\left(t, x\left(t, t_{0}, x_{0}\right)\right) z(t), z\left(t_{0}\right)=z_{0} . \tag{1.4}
\end{equation*}
$$

The fundamental matrix $\Phi\left(t, t_{0}, x_{0}\right)$ of (1.4) is given by

$$
\Phi\left(t, t_{0}, x_{0}\right)=\frac{\partial}{\partial x_{0}} x\left(t, t_{0}, x_{0}\right)
$$

and $\Phi\left(t, t_{0}, 0\right)$ is the fundamental matrix of (1.3).
We recall some notions of h-stability [17].
Definition 1.1. The system (1.1) (the zero solution $x=0$ of (1.1)) is called an h-system if there exist a constant $c \geq 1$, and a positive continuous function h on \mathbb{R}^{+}such that

$$
|x(t)| \leq c\left|x_{0}\right| h(t) h\left(t_{0}\right)^{-1}
$$

for $t \geq t_{0} \geq 0$ and $\left|x_{0}\right|$ small enough (here $\left.h(t)^{-1}=\frac{1}{h(t)}\right)$.
Definition 1.2. The system (1.1) (the zero solution $x=0$ of (1.1)) is called h-stable (hS) if there exists $\delta>0$ such that (1.1) is an h-system for $\left|x_{0}\right| \leq \delta$ and h is bounded.

Let \mathcal{M} denote the set of all $n \times n$ continuous matrices $A(t)$ defined on \mathbb{R}^{+}and \mathcal{N} be the subset of \mathcal{M} consisting of those nonsingular matrices $S(t)$ that are of class C^{1} with the property that $S(t)$ and $S^{-1}(t)$ are bounded. The notion of t_{∞}-similarity in \mathcal{M} was introduced by Conti [8].

Definition 1.3. A matrix $A(t) \in \mathcal{M}$ is t_{∞}-similar to a matrix $B(t) \in$ \mathcal{M} if there exists an $n \times n$ matrix $F(t)$ absolutely integrable over \mathbb{R}^{+}, that is,

$$
\int_{0}^{\infty}|F(t)| d t<\infty
$$

such that

$$
\begin{equation*}
\dot{S}(t)+S(t) B(t)-A(t) S(t)=F(t) \tag{1.5}
\end{equation*}
$$

for some $S(t) \in \mathcal{N}$.
The notion of t_{∞}-similarity is an equivalence relation in the set of all $n \times n$ continuous matrices on \mathbb{R}^{+}, and it preserves some stability concepts $[8,12]$.

Before proceeding to the statement of main results, we set forth some known results.

Lemma 1.4. [17] The linear system

$$
\begin{equation*}
x^{\prime}=A(t) x, x\left(t_{0}\right)=x_{0}, \tag{1.6}
\end{equation*}
$$

where $A(t)$ is an $n \times n$ continuous matrix, is an h-system (respectively h-stable) if and only if there exist $c \geq 1$ and a positive and continuous (respectively bounded) function h defined on \mathbb{R}^{+}such that

$$
\begin{equation*}
\left|\phi\left(t, t_{0}\right)\right| \leq \operatorname{ch}(t) h\left(t_{0}\right)^{-1} \tag{1.7}
\end{equation*}
$$

for $t \geq t_{0} \geq 0$, where $\phi\left(t, t_{0}\right)$ is a fundamental matrix of (1.6).
We need Alekseev formula to compare between the solutions of (1.1) and the solutions of perturbed nonlinear system

$$
\begin{equation*}
y^{\prime}=f(t, y)+g(t, y), y\left(t_{0}\right)=y_{0}, \tag{1.8}
\end{equation*}
$$

where $g \in C\left(\mathbb{R}^{+} \times \mathbb{R}^{n}, \mathbb{R}^{n}\right)$ and $g(t, 0)=0$. Let $y(t)=y\left(t, t_{0}, y_{0}\right)$ denote the solution of (1.8) passing through the point $\left(t_{0}, y_{0}\right)$ in $\mathbb{R}^{+} \times \mathbb{R}^{n}$.

The following is a generalization to nonlinear system of the variation of constants formula due to Alekseev [1].

Lemma 1.5. [2] Let x and y be a solution of (1.1) and (1.8), respectively. If $y_{0} \in \mathbb{R}^{n}$, then for all $t \geq t_{0}$ such that $x\left(t, t_{0}, y_{0}\right) \in \mathbb{R}^{n}$, $y\left(t, t_{0}, y_{0}\right) \in \mathbb{R}^{n}$,

$$
y\left(t, t_{0}, y_{0}\right)=x\left(t, t_{0}, y_{0}\right)+\int_{t_{0}}^{t} \Phi(t, s, y(s)) g(s, y(s)) d s
$$

Theorem 1.6. [6] If the zero solution of (1.1) is $h S$, then the zero solution of (1.3) is hS.

ThEOREM 1.7. [7] Suppose that $f_{x}(t, 0)$ is t_{∞}-similar to $f_{x}\left(t, x\left(t, t_{0}, x_{0}\right)\right)$ for $t \geq t_{0} \geq 0$ and $\left|x_{0}\right| \leq \delta$ for some constant $\delta>0$. If the solution $v=0$ of (1.3) is hS, then the solution $z=0$ of (1.4) is hS.

Lemma 1.8. (Bihari - type inequality) Let $u, \lambda \in C\left(\mathbb{R}^{+}\right), w \in$ $C((0, \infty))$ and $w(u)$ be nondecreasing in u. Suppose that for some $c>0$

$$
u(t) \leq c+\int_{t_{0}}^{t} \lambda(s) w(u(s)) d s, t \geq t_{0} \geq 0
$$

Then

$$
u(t) \leq W^{-1}\left[W(c)+\int_{t_{0}}^{t} \lambda(s) d s\right], \quad t_{0} \leq t<b_{1}
$$

where $W(u)=\int_{u_{0}}^{u} \frac{d s}{w(s)}, W^{-1}(u)$ is the inverse of $W(u)$ and

$$
b_{1}=\sup \left\{t \geq t_{0}: W(c)+\int_{t_{0}}^{t} \lambda(s) d s \in \operatorname{domW}^{-1}\right\}
$$

Lemma 1.9. [4] Let $u, \lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5}, \lambda_{6}, \lambda_{7}, \lambda_{8}, \lambda_{9}, \lambda_{10} \in C\left(\mathbb{R}^{+}\right)$, $w \in C((0, \infty))$, and $w(u)$ be nondecreasing in u, $u \leq w(u)$. Suppose that for some $c>0$ and $0 \leq t_{0} \leq t$,

$$
\begin{aligned}
u(t) \leq c & +\int_{t_{0}}^{t} \lambda_{1}(s) u(s) d s+\int_{t_{0}}^{t} \lambda_{2}(s) w(u(s)) d s \\
& +\int_{t_{0}}^{t} \lambda_{3}(s) \int_{t_{0}}^{s}\left(\lambda_{4}(\tau) u(\tau)+\lambda_{5}(\tau) \int_{t_{0}}^{\tau} \lambda_{6}(r) u(r) d r\right. \\
& \left.+\lambda_{7}(\tau) \int_{t_{0}}^{\tau} \lambda_{8}(r) w(u(r)) d r\right) d \tau d s \\
& +\int_{t_{0}}^{t} \lambda_{9}(s) \int_{t_{0}}^{s} \lambda_{10}(\tau) w(u(\tau)) d \tau d s
\end{aligned}
$$

Then

$$
\begin{aligned}
u(t) \leq & W^{-1}\left[W(c)+\int_{t_{0}}^{t}\left(\lambda_{1}(s)+\lambda_{2}(s)\right.\right. \\
& +\lambda_{3}(s) \int_{t_{0}}^{s}\left(\lambda_{4}(\tau)+\lambda_{5}(\tau) \int_{t_{0}}^{\tau} \lambda_{6}(r) d r\right. \\
& \left.\left.\left.+\lambda_{7}(\tau) \int_{t_{0}}^{\tau} \lambda_{8}(r) d r\right) d \tau+\lambda_{9}(s) \int_{t_{0}}^{s} \lambda_{10}(\tau) d \tau\right) d s\right]
\end{aligned}
$$

where $t_{0} \leq t<b_{1}, W, W^{-1}$ are the same functions as in Lemma 1.8, and

$$
\begin{gathered}
b_{1}=\sup \left\{t \geq t_{0}: \quad W(c)+\int_{t_{0}}^{t}\left(\lambda_{1}(s)+\lambda_{2}(s)+\lambda_{3}(s) \int_{t_{0}}^{s}\left(\lambda_{4}(\tau)\right.\right.\right. \\
\left.+\lambda_{5}(\tau) \int_{t_{0}}^{\tau} \lambda_{6}(r) d r+\lambda_{7}(\tau) \int_{t_{0}}^{\tau} \lambda_{8}(r) d r\right) d \tau \\
\left.\left.+\lambda_{9}(s) \int_{t_{0}}^{s} \lambda_{10}(\tau) d \tau\right) d s \in \operatorname{domW}^{-1}\right\}
\end{gathered}
$$

We need the following two corollaries for the proof.

Corollary 1.10. Let $u, \lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5}, \lambda_{6}, \lambda_{7}, \lambda_{8}, \lambda_{9} \in C\left(\mathbb{R}^{+}\right), w \in$ $C((0, \infty))$, and $w(u)$ be nondecreasing in $u, u \leq w(u)$. Suppose that for some $c>0$ and $0 \leq t_{0} \leq t$,

$$
\begin{aligned}
u(t) \leq c & +\int_{t_{0}}^{t} \lambda_{1}(s) u(s) d s+\int_{t_{0}}^{t} \lambda_{2}(s) w(u(s)) d s \\
& +\int_{t_{0}}^{t} \lambda_{3}(s) \int_{t_{0}}^{s}\left(\lambda_{4}(\tau) \int_{t_{0}}^{\tau} \lambda_{5}(r) u(r) d r\right. \\
& \left.+\lambda_{6}(\tau) \int_{t_{0}}^{\tau} \lambda_{7}(r) w(u(r)) d r\right) d \tau d s \\
& +\int_{t_{0}}^{t} \lambda_{8}(s) \int_{t_{0}}^{s} \lambda_{9}(\tau) w(u(\tau)) d \tau d s
\end{aligned}
$$

Then

$$
\begin{gathered}
u(t) \leq W^{-1}\left[W(c)+\int_{t_{0}}^{t}\left(\lambda_{1}(s)+\lambda_{2}(s)+\lambda_{3}(s) \int_{t_{0}}^{s}\left(\lambda_{4}(\tau) \int_{t_{0}}^{\tau} \lambda_{5}(r) d r\right.\right.\right. \\
\left.\left.\left.+\lambda_{6}(\tau) \int_{t_{0}}^{\tau} \lambda_{7}(r) d r\right) d \tau+\lambda_{8}(s) \int_{t_{0}}^{s} \lambda_{9}(\tau) d \tau\right) d s\right]
\end{gathered}
$$

where $t_{0} \leq t<b_{1}, W, W^{-1}$ are the same functions as in Lemma 1.8, and

$$
\begin{aligned}
& b_{1}=\sup \left\{t \geq t_{0}: W(c)+\int_{t_{0}}^{t}\left(\lambda_{1}(s)+\lambda_{2}(s)+\lambda_{3}(s) \int_{t_{0}}^{s}\left(\lambda_{4}(\tau) \int_{t_{0}}^{\tau} \lambda_{5}(r) d r\right.\right.\right. \\
&\left.\left.\left.+\lambda_{6}(\tau) \int_{t_{0}}^{\tau} \lambda_{7}(r) d r\right) d \tau+\lambda_{8}(s) \int_{t_{0}}^{s} \lambda_{9}(\tau) d \tau\right) d s \in \operatorname{domW}^{-1}\right\} .
\end{aligned}
$$

Corollary 1.11. Let $u, \lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5}, \lambda_{6} \in C\left(\mathbb{R}^{+}\right), w \in C((0, \infty))$ and $w(u)$ be nondecreasing in $u, u \leq w(u)$. Suppose that for some $c>0$,

$$
\begin{aligned}
u(t) \leq & c+\int_{t_{0}}^{t} \lambda_{1}(s) u(s) d s+\int_{t_{0}}^{t} \lambda_{2}(s) w(u(s)) d s \\
& +\int_{t_{0}}^{t} \lambda_{3}(s) \int_{t_{0}}^{s} \lambda_{4}(\tau) u(\tau) d \tau d s \\
& +\int_{t_{0}}^{t} \lambda_{5}(s) \int_{t_{0}}^{s} \lambda_{6}(\tau) w(u(\tau)) d \tau d s, \quad 0 \leq t_{0} \leq t
\end{aligned}
$$

Then

$$
\begin{gathered}
u(t) \leq W^{-1}\left[W(c)+\int_{t_{0}}^{t}\left(\lambda_{1}(s)+\lambda_{2}(s)+\lambda_{3}(s) \int_{t_{0}}^{s} \lambda_{4}(\tau) d \tau\right.\right. \\
\left.\left.+\lambda_{5}(s) \int_{t_{0}}^{s} \lambda_{6}(\tau) d \tau\right) d s\right]
\end{gathered}
$$

where $t_{0} \leq t<b_{1}, W, W^{-1}$ are the same functions as in Lemma 1.8, and

$$
\begin{aligned}
b_{1}=\sup \left\{t \geq t_{0}:\right. & W(c)+\int_{t_{0}}^{t}\left(\lambda_{1}(s)+\lambda_{2}(s)+\lambda_{3}(s) \int_{t_{0}}^{s} \lambda_{4}(\tau) d \tau\right. \\
& \left.\left.+\lambda_{5}(s) \int_{t_{0}}^{s} \lambda_{6}(\tau) d \tau\right) d s \in \operatorname{domW}^{-1}\right\}
\end{aligned}
$$

2. Main Results

In this section, we investigate boundedness for solutions of the perturbed differential systems via t_{∞}-similarity.

To obtain the bounded result for solutions of the perturbed differential systems, the following assumptions are needed:
(H1) $f_{x}(t, 0)$ is t_{∞}-similar to $f_{x}\left(t, x\left(t, t_{0}, x_{0}\right)\right)$ for $t \geq t_{0} \geq 0$ and $\left|x_{0}\right| \leq \delta$ for some constant $\delta>0$.
(H2) The solution $x=0$ of (1.1) is hS with the increasing function h.
(H3) $w(u)$ is nondecreasing in u such that $u \leq w(u)$ and $\frac{1}{v} w(u) \leq w\left(\frac{u}{v}\right)$ for some $v>0$.

Theorem 2.1. Let $a, b, c, d, k, m, n, p, q \in C\left(\mathbb{R}^{+}\right)$. Suppose that (H1), (H2), (H3), and g in (1.2) satisfies

$$
\begin{equation*}
\left|g\left(t, y, T_{1} y\right)\right| \leq a(t) w(|y(t)|)+\left|T_{1} y(t)\right| \tag{2.1}
\end{equation*}
$$

$$
\begin{equation*}
\left|T_{1} y(t)\right| \leq b(t) \int_{t_{0}}^{t} k(s)|y(s)| d s+d(t) \int_{t_{0}}^{t} p(s) w(|y(s)|) d s \tag{2.2}
\end{equation*}
$$

and

$$
\begin{align*}
& \left|h\left(t, y(t), T_{2} y(t)\right)\right| \leq c(t) w(|y(t)|)+\left|T_{2} y(t)\right| \\
& \left|T_{2} y(t)\right| \leq m(t)|y(t)|+n(t) \int_{t_{0}}^{t} q(s)|y(s)| d s \tag{2.3}
\end{align*}
$$

where $a, b, c, d, k, m, n, p, q \in L^{1}\left(\mathbb{R}^{+}\right)$, $w \in C((0, \infty))$, and T_{1}, T_{2} are continuous operators. Then any solution $y(t)=y\left(t, t_{0}, y_{0}\right)$ of (1.2) is bounded on on $\left[t_{0}, \infty\right)$ and it satisfies

$$
\begin{aligned}
|y(t)| & \leq h(t) W^{-1}\left[W(c)+c_{2} \int_{t_{0}}^{t}\left(c(s)+m(s)+\int_{t_{0}}^{s}(a(\tau)\right.\right. \\
& \left.\left.\left.+b(\tau) \int_{t_{0}}^{\tau} k(r) d r+d(\tau) \int_{t_{0}}^{\tau} p(r) d r\right) d \tau+n(s) \int_{t_{0}}^{s} q(\tau) d \tau\right) d s\right]
\end{aligned}
$$

where $t_{0} \leq t<b_{1}, c=c_{1}\left|y_{0}\right| h\left(t_{0}\right)^{-1}, W, W^{-1}$ are the same functions as in Lemma 1.8, and

$$
\begin{aligned}
b_{1}=\sup \left\{t \geq t_{0}:\right. & W(c)+c_{2} \int_{t_{0}}^{t}\left(c(s)+m(s)+\int_{t_{0}}^{s}\left(a(\tau)+b(\tau) \int_{t_{0}}^{\tau} k(r) d r\right.\right. \\
& \left.\left.\left.+d(\tau) \int_{t_{0}}^{\tau} p(r) d r\right) d \tau+n(s) \int_{t_{0}}^{s} q(\tau) d \tau\right) d s \in \operatorname{domW}^{-1}\right\}
\end{aligned}
$$

Proof. Let $x(t)=x\left(t, t_{0}, y_{0}\right)$ and $y(t)=y\left(t, t_{0}, y_{0}\right)$ be solutions of (1.1) and (1.2), respectively. By Theorem 1.6, since the solution $x=0$ of (1.1) is hS, the solution $v=0$ of (1.3) is hS. Therefore, from (H1), by Theorem 1.7, the solution $z=0$ of (1.4) is hS. Applying the nonlinear variation of constants formula due to Lemma 1.5, together with (2.1), (2.2), and (2.3), we have

$$
\begin{aligned}
& |y(t)| \\
& \leq|x(t)|+\int_{t_{0}}^{t}|\Phi(t, s, y(s))|\left(\int_{t_{0}}^{s}\left|g\left(\tau, y(\tau), T_{1} y(\tau)\right)\right| d \tau+\left|h\left(s, y(s), T_{2} y(s)\right)\right|\right) d s \\
& \leq c_{1}\left|y_{0}\right| h(t) h\left(t_{0}\right)^{-1}+\int_{t_{0}}^{t} c_{2} h(t) h(s)^{-1}\left(\int_{t_{0}}^{s}(a(\tau) w(|y(\tau)|)\right. \\
& \left.\quad+b(\tau) \int_{t_{0}}^{\tau} k(r)|y(r)| d r+d(\tau) \int_{t_{0}}^{\tau} p(r) w(|y(r)|) d r\right) d \tau \\
& \left.\quad+m(s)|y(s)|+c(s) w(|y(s)|)+n(s) \int_{t_{0}}^{s} q(\tau)|y(\tau)| d \tau\right) d s .
\end{aligned}
$$

By the assumptions (H2) and (H3), we obtain

$$
\begin{aligned}
|y(t)| & \leq c_{1}\left|y_{0}\right| h(t) h\left(t_{0}\right)^{-1}+\int_{t_{0}}^{t} c_{2} h(t)\left(m(s) \frac{|y(s)|}{h(s)}+c(s) w\left(\frac{|y(s)|}{h(s)}\right)\right. \\
& +\int_{t_{0}}^{s}\left(a(\tau) w\left(\frac{|y(\tau)|}{h(\tau)}\right)+b(\tau) \int_{t_{0}}^{\tau} k(r) \frac{|y(r)|}{h(r)} d r\right. \\
& \left.\left.+d(\tau) \int_{t_{0}}^{\tau} p(r) w\left(\frac{|y(r)|}{h(r)}\right) d r\right) d \tau+n(s) \int_{t_{0}}^{s} q(\tau) \frac{|y(\tau)|}{h(\tau)} d \tau\right) d s
\end{aligned}
$$

Let $u(t)=|y(t)||h(t)|^{-1}$. Then, by Lemma 1.9, we have

$$
\begin{aligned}
|y(t)| & \leq h(t) W^{-1}\left[W(c)+c_{2} \int_{t_{0}}^{t}\left(c(s)+m(s)+\int_{t_{0}}^{s}(a(\tau)\right.\right. \\
& \left.\left.\left.+b(\tau) \int_{t_{0}}^{\tau} k(r) d r+d(\tau) \int_{t_{0}}^{\tau} p(r) d r\right) d \tau+n(s) \int_{t_{0}}^{s} q(\tau) d \tau\right) d s\right]
\end{aligned}
$$

where $c=c_{1}\left|y_{0}\right| h\left(t_{0}\right)^{-1}$. From the above estimation, we obtain the desired result. Thus, the proof is complete.

Remark 2.2. Letting $c(t)=k(t)=m(t)=q(t)=0$ in Theorem 2.1, we obtain the similar result as that of Theorem 3.4 in [5].

Theorem 2.3. Let $a, b, c, d, k, m, p, q \in C\left(\mathbb{R}^{+}\right)$. Suppose that (H1), (H2), (H3), and g in (1.2) satisfies

$$
\begin{equation*}
\int_{t_{0}}^{t}\left|g\left(s, y(s), T_{1} y(s)\right)\right| d s \leq a(t) w(|y(t)|)+\left|T_{1} y(t)\right| \tag{2.4}
\end{equation*}
$$

$$
\begin{equation*}
\left|T_{1} y(t)\right| \leq b(t) \int_{t_{0}}^{t} k(s)|y(s)| d s+d(t) \int_{t_{0}}^{t} p(s) w(|y(s)|) d s \tag{2.5}
\end{equation*}
$$

$$
\begin{equation*}
\left|h\left(t, y(t), T_{2} y(t)\right)\right| \leq b(t) \int_{t_{0}}^{t} c(s)|y(s)| d s+\left|T_{2} y(t)\right| \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|T_{2} y(t)\right| \leq m(t)|y(t)|+d(t) \int_{t_{0}}^{t} q(s) w(|y(s)|) d s \tag{2.7}
\end{equation*}
$$

where $a, b, c, d, k, m, p, q \in L^{1}\left(\mathbb{R}^{+}\right), w \in C((0, \infty)), T_{1}, T_{2}$ are continuous operators. Then any solution $y(t)=y\left(t, t_{0}, y_{0}\right)$ of (1.2) is bounded on $\left[t_{0}, \infty\right)$ and it satisfies

$$
\begin{aligned}
|y(t)| & \leq h(t) W^{-1}\left[W(c)+c_{2} \int_{t_{0}}^{t}(a(s)+m(s)\right. \\
& \left.\left.+b(s) \int_{t_{0}}^{s}(c(\tau)+k(\tau)) d \tau+d(s) \int_{t_{0}}^{s}(p(\tau)+q(\tau)) d \tau\right) d s\right]
\end{aligned}
$$

where $t_{0} \leq t<b_{1}, W, W^{-1}$ are the same functions as in Lemma 1.8, and

$$
\begin{aligned}
b_{1}=\sup \left\{t \geq t_{0}:\right. & W(c)+c_{2} \int_{t_{0}}^{t}\left(a(s)+m(s)+b(s) \int_{t_{0}}^{s}(c(\tau)+k(\tau)) d \tau\right. \\
& \left.\left.+d(s) \int_{t_{0}}^{s}(p(\tau)+q(\tau)) d \tau\right] d s \in \operatorname{domW}{ }^{-1}\right\}
\end{aligned}
$$

Proof. Let $x(t)=x\left(t, t_{0}, y_{0}\right)$ and $y(t)=y\left(t, t_{0}, y_{0}\right)$ be solutions of (1.1) and (1.2), respectively. By the same argument as in the proof in Theorem 2.1, the solution $z=0$ of (1.4) is hS. Using the nonlinear variation of constants formula due to Lemma 1.5, together with $(2.4),(2.5)$, (2.6), and (2.7), we have

$$
\begin{aligned}
|y(t)| \leq & c_{1}\left|y_{0}\right| h(t) h\left(t_{0}\right)^{-1}+\int_{t_{0}}^{t} c_{2} h(t) h(s)^{-1}(a(s) w(|y(s)|) \\
& +b(s) \int_{t_{0}}^{s}(c(\tau)+k(\tau))|y(\tau)| d \tau \\
& \left.+d(s) \int_{t_{0}}^{s}(p(\tau)+q(\tau)) w(|y(\tau)|) d \tau+m(s)|y(s)|\right) d s
\end{aligned}
$$

It follows from (H2) and (H3) that

$$
\begin{aligned}
|y(t)| \leq & c_{1}\left|y_{0}\right| h(t) h\left(t_{0}\right)^{-1}+\int_{t_{0}}^{t} c_{2} h(t)\left(m(s) \frac{|y(s)|}{h(s)}+a(s) w\left(\frac{|y(s)|}{h(s)}\right)\right. \\
& +b(s) \int_{t_{0}}^{s}(c(\tau)+k(\tau)) \frac{|y(\tau)|}{h(\tau)} d \tau \\
& \left.+d(s) \int_{t_{0}}^{s}(p(\tau)+q(\tau)) w\left(\frac{|y(\tau)|}{h(\tau)}\right) d \tau\right) d s .
\end{aligned}
$$

Let $u(t)=|y(t)||h(t)|^{-1}$. Then, by Corollary 1.11, we have

$$
\begin{aligned}
|y(t)| \leq & h(t) W^{-1}\left[W(c)+c_{2} \int_{t_{0}}^{t}(a(s)+m(s)\right. \\
& \left.\left.+b(s) \int_{t_{0}}^{s}(c(\tau)+k(\tau)) d \tau+d(s) \int_{t_{0}}^{s}(p(\tau)+q(\tau)) d \tau\right) d s\right]
\end{aligned}
$$

where $c=c_{1}\left|y_{0}\right| h(t) h\left(t_{0}\right)^{-1}$. Thus any solution $y(t)=y\left(t, t_{0}, y_{0}\right)$ of (1.2) is bounded on $\left[t_{0}, \infty\right)$, and so the proof is complete.

Remark 2.4. Letting $c(t)=k(t)=m(t)=q(t)=0$ in Theorem 2.3, we obtain the same result as that of Theorem 3.3 in [5].

Theorem 2.5. Let $a, b, c, d, k, m, p, q \in C\left(\mathbb{R}^{+}\right)$. Suppose that (H1), (H2), (H3), and g in (1.2) satisfies

$$
\begin{equation*}
\left|g\left(t, y, T_{1} y\right)\right| \leq a(t) w(|y(t)|)+\left|T_{1} y(t)\right|, \tag{2.8}
\end{equation*}
$$

$$
\left|T_{1} y(t)\right| \leq b(t) \int_{t_{0}}^{t} k(s)|y(s)| d s+c(t) \int_{t_{0}}^{t} p(s) w(|y(s)|) d s
$$

and

$$
\begin{align*}
& h\left(t, y(t), T_{2} y(t)\right)\left|\leq \int_{t_{0}}^{t} q(s) w(|y(s)|) d s+\left|T_{2} y(t)\right|,\right. \tag{2.10}\\
& \left|T_{2} y(t)\right| \leq m(t)|y(t)|+d(t) w(|y(t)|),
\end{align*}
$$

where $a, b, c, d, k, m, p, q \in L^{1}\left(\mathbb{R}^{+}\right), w \in C((0, \infty)), T_{1}, T_{2}$ are continuous operators. Then, any solution $y(t)=y\left(t, t_{0}, y_{0}\right)$ of (1.2) is bounded on $\left[t_{0}, \infty\right)$ and it satisfies

$$
\begin{aligned}
|y(t)| \leq & h(t) W^{-1}\left[W(c)+c_{2} \int_{t_{0}}^{t}\left(d(s)+m(s)+\int_{t_{0}}^{s}(a(\tau)+q(\tau)\right.\right. \\
& \left.\left.\left.+b(\tau) \int_{t_{0}}^{\tau} k(r) d r+c(\tau) \int_{t_{0}}^{\tau} p(r) d r\right) d \tau\right) d s\right]
\end{aligned}
$$

where W, W^{-1} are the same functions as in Lemma 1.8, and

$$
\begin{aligned}
b_{1}=\sup \left\{t \geq t_{0}\right. & : W(c)+c_{2} \int_{t_{0}}^{t}\left(d(s)+m(s)+\int_{t_{0}}^{s}(a(\tau)+q(\tau)\right. \\
& \left.\left.\left.+b(\tau) \int_{t_{0}}^{\tau} k(r) d r+c(\tau) \int_{t_{0}}^{\tau} p(r) d r\right) d \tau\right) d s \in \operatorname{domW}^{-1}\right\} .
\end{aligned}
$$

Proof. Let $x(t)=x\left(t, t_{0}, y_{0}\right)$ and $y(t)=y\left(t, t_{0}, y_{0}\right)$ be solutions of (1.1) and (1.2), respectively. By the same argument as in the proof in Theorem 2.1, the solution $z=0$ of (1.4) is hS. Applying the nonlinear variation of constants formula due to Lemma 1.5, together with (2.8), (2.9), and (2.10), we have

$$
\begin{aligned}
& |y(t)| \\
& \leq \\
& \quad c_{1}\left|y_{0}\right| h(t) h\left(t_{0}\right)^{-1}+\int_{t_{0}}^{t} c_{2} h(t) h(s)^{-1}(m(s)|y(s)|+d(s) w(|y(s)|) \\
& \quad+\int_{t_{0}}^{s}\left((a(\tau)+q(\tau)) w(|y(\tau)|)+b(\tau) \int_{t_{0}}^{\tau} k(r)|y(r)| d r\right. \\
& \left.\left.\quad+c(\tau) \int_{t_{0}}^{\tau} p(r) w(|y(r)|) d r\right) d \tau\right) d s
\end{aligned}
$$

By the assumptions (H2) and (H3), we obtain

$$
\begin{aligned}
|y(t)| \leq & c_{1}\left|y_{0}\right| h(t) h\left(t_{0}\right)^{-1}+\int_{t_{0}}^{t} c_{2} h(t)\left(m(s) \frac{|y(s)|}{h(s)}+d(s) w\left(\frac{|y(s)|}{h(s)}\right)\right. \\
& +\int_{t_{0}}^{s}\left((a(\tau)+q(\tau)) w\left(\frac{|y(\tau)|}{h(\tau)}\right)+b(\tau) \int_{t_{0}}^{\tau} k(r) \frac{|y(r)|}{h(r)} d r\right. \\
& \left.\left.+c(\tau) \int_{t_{0}}^{\tau} p(r) w\left(\frac{|y(r)|}{h(r)}\right) d r\right) d \tau\right) d s .
\end{aligned}
$$

Let $u(t)=|y(t)||h(t)|^{-1}$. Then, by Corollary 1.10, we have

$$
\begin{aligned}
|y(t)| \leq & h(t) W^{-1}\left[W(c)+c_{2} \int_{t_{0}}^{t}\left(d(s)+m(s)+\int_{t_{0}}^{s}(a(\tau)+q(\tau)\right.\right. \\
& \left.\left.\left.+b(\tau) \int_{t_{0}}^{\tau} k(r) d r+c(\tau) \int_{t_{0}}^{\tau} p(r) d r\right) d \tau\right) d s\right]
\end{aligned}
$$

where $c=c_{1}\left|y_{0}\right| h\left(t_{0}\right)^{-1}$. The above estimation yields the desired result since the function h is bounded. This completes the proof.

REmARK 2.6. Letting $d(t)=k(t)=m(t)=q(t)=0$ in Theorem 2.5, we obtain the similar result as that of Theorem 3.4 in [5].

Theorem 2.7. Let $a, b, c, d, k, m, p, q \in C\left(\mathbb{R}^{+}\right)$. Suppose that (H1), (H2), (H3), and g in (1.2) satisfies

$$
\begin{gather*}
\int_{t_{0}}^{t}\left|g\left(s, y(s), T_{1} y(s)\right)\right| d s \leq a(t) w(|y(t)|)+\left|T_{1} y(t)\right| \tag{2.11}\\
\left|T_{1} y(t)\right| \leq b(t) \int_{t_{0}}^{t} k(s)|y(s)| d s+c(t) \int_{t_{0}}^{t} p(s) w(|y(s)|) d s \tag{2.12}
\end{gather*}
$$

and

$$
\begin{align*}
& \left|h\left(t, y(t), T_{2} y(t)\right)\right| \leq c(t) \int_{t_{0}}^{t} q(s) w(|y(s)|) d s+\left|T_{2} y(t)\right|, \tag{2.13}\\
& \left|T_{2} y(t)\right| \leq m(t)|y(t)|+d(t) w(|y(t)|)
\end{align*}
$$

where $a, b, c, d, k, m, p, q \in L^{1}\left(\mathbb{R}^{+}\right), w \in C((0, \infty)), T_{1}, T_{2}$ are continuous operators. Then, any solution $y(t)=y\left(t, t_{0}, y_{0}\right)$ of (1.2) is bounded on $\left[t_{0}, \infty\right)$ and it satisfies

$$
\begin{aligned}
|y(t)| & \leq h(t) W^{-1}\left[W(c)+c_{2} \int_{t_{0}}^{t}(a(s)+d(s)+m(s)\right. \\
& \left.\left.+b(s) \int_{t_{0}}^{s} k(\tau) d \tau+c(s) \int_{t_{0}}^{s}(p(\tau)+q(\tau)) d \tau\right) d s\right]
\end{aligned}
$$

where $t_{0} \leq t<b_{1}, W, W^{-1}$ are the same functions as in Lemma 1.8, and

$$
\begin{aligned}
b_{1}= & \sup \left\{t \geq t_{0}: W(c)+c_{2} \int_{t_{0}}^{t}(a(s)+d(s)+m(s)\right. \\
& \left.\left.+b(s) \int_{t_{0}}^{s} k(\tau) d \tau+c(s) \int_{t_{0}}^{s}(p(\tau)+q(\tau)) d \tau\right) d s \in \operatorname{domW}^{-1}\right\} .
\end{aligned}
$$

Proof. Let $x(t)=x\left(t, t_{0}, y_{0}\right)$ and $y(t)=y\left(t, t_{0}, y_{0}\right)$ be solutions of (1.1) and (1.2), respectively. By the same argument as in the proof in Theorem 2.1, the solution $z=0$ of (1.4) is hS. Using the nonlinear variation of constants formula due to Lemma 1.5, together with (2.11), (2.12), and (2.13), we have

$$
\begin{aligned}
|y(t)| & \leq c_{1}\left|y_{0}\right| h(t) h\left(t_{0}\right)^{-1}+\int_{t_{0}}^{t} c_{2} h(t) h(s)^{-1}(m(s)|y(s)| \\
& +(a(s)+d(s)) w(|y(s)|)+b(s) \int_{t_{0}}^{s} k(\tau)|y(\tau)| d \tau \\
& \left.+c(s) \int_{t_{0}}^{s}(p(\tau)+q(\tau)) w(|y(\tau)|) d \tau\right) d s .
\end{aligned}
$$

It follows from (H2) and (H3) that

$$
\begin{aligned}
|y(t)| \leq & c_{1}\left|y_{0}\right| h(t) h\left(t_{0}\right)^{-1}+\int_{t_{0}}^{t} c_{2} h(t)\left(m(s) \frac{|y(s)|}{h(s)}\right. \\
& +(a(s)+d(s)) w\left(\frac{|y(s)|}{h(s)}\right)+b(s) \int_{t_{0}}^{s} k(\tau) \frac{|y(\tau)|}{h(\tau)} d \tau \\
& \left.+c(s) \int_{t_{0}}^{s}(p(\tau)+q(\tau)) w\left(\frac{|y(\tau)|}{h(\tau)}\right) d \tau\right) d s
\end{aligned}
$$

Let $u(t)=|y(t)||h(t)|^{-1}$. Then, by Corollary 1.11, we have

$$
\begin{aligned}
|y(t)| \leq & h(t) W^{-1}\left[W(c)+c_{2} \int_{t_{0}}^{t}(a(s)+d(s)+m(s)\right. \\
& \left.\left.+b(s) \int_{t_{0}}^{s} k(\tau) d \tau+d(s) \int_{t_{0}}^{s}(p(\tau)+q(\tau)) d \tau\right) d s\right]
\end{aligned}
$$

where $c=c_{1}\left|y_{0}\right| h(t) h\left(t_{0}\right)^{-1}$. Thus any solution $y(t)=y\left(t, t_{0}, y_{0}\right)$ of (1.2) is bounded on $\left[t_{0}, \infty\right)$. Hence the proof is complete.

Remark 2.8. Letting $d(t)=k(t)=m(t)=q(t)=0$ in Theorem 2.7, we obtain the same result as that of Theorem 3.3 in [5].

Acknowledgement. The authors are very grateful for the referee's valuable comments.

References

[1] V. M. Alekseev, An estimate for the perturbations of the solutions of ordinary differential equations, Vestn. Mosk. Univ. Ser. I. Math. Mekh. 2 (1961), 2836(Russian).
[2] F. Brauer, Perturbations of nonlinear systems of differential equations, J. Math. Anal. Appl. 14 (1966), 198-206.
[3] S. I. Choi and Y. H. Goo, Boundedness in perturbed nonlinear functional differential systems, J. Chungcheong Math. Soc. 28 (2015), 217-228.
[4] S. I. Choi and Y. H. Goo, Uniform Lipschitz stability of perturbed differential systems, Far East J. Math. Sci. 101 (2017), 721-735.
[5] S. I. Choi, D. M. Im, and Y. H. Goo, Boundedness in perturbed functional differential systems, J. Appl. Math. and Informatics, 32 (2014), 697-705.
[6] S. K. Choi and H. S. Ryu, h-stability in differential systems, Bull. Inst. Math. Acad. Sinica, 21 (1993), 245-262.
[7] S. K. Choi, N. J. Koo, and H. S. Ryu, h-stability of differential systems via t_{∞}-similarity, Bull. Korean. Math. Soc. 34 (1997), 371-383.
[8] R. Conti, Sulla t_{∞}-similitudine tra matricie l'equivalenza asintotica dei sistemi differenziali lineari, Rivista di Mat. Univ. Parma, 8 (1957), 43-47.
[9] Y. H. Goo, Boundedness in functional differential systems via t_{∞}-similarity, J. Chungcheong Math. Soc. 29 (2016), 347-359.
[10] Y. H. Goo, Boundedness in nonlinear perturbed functional differential systems via t_{∞}-similarity, Far East J. Math. Sci. 100 (2016), 1727-1744.
[11] Y. H. Goo and S. B. Yang, h-stability of the nonlinear perturbed differential systems via t_{∞}-similarity, J. Chungcheong Math. Soc. 24 (2011), 695-702.
[12] G. A. Hewer, Stability properties of the equation by t_{∞}-similarity, J. Math. Anal. Appl. 41 (1973), 336-344.
[13] V. Lakshmikantham and S. Leela, Differential and Integral Inequalities: Theory and Applications Vol. 1, Academic Press, New York and London, (1969).
[14] B. G. Pachpatte, Stability and asymptotic behavior of perturbed nonlinear systems, J. diff. equations, 16 (1974) 14-25.
[15] B. G. Pachpatte, Perturbations of nonlinear systems of differential equations, J. Math. Anal. Appl. 51 (1975), 550-556.
[16] M. Pinto, Perturbations of asymptotically stable differential systems, Analysis, 4 (1984), 161-175.
[17] M. Pinto, Stability of nonlinear differential systems, Applicable Analysis, 43 (1992), 1-20.

*

Department of Mathematics Education
Cheongju University
Cheongju 28503, Republic of Korea
E-mail: dmim@cheongju.ac.kr
**
Department of Mathematics
Hanseo University
Seosan 31962, Republic of Korea
E-mail: schoi@hanseo.ac.kr

Department of Mathematics
Hanseo University
Seosan 31962, Republic of Korea
E-mail: yhgoo@hanseo.ac.kr

[^0]: Received December 03, 2016; Accepted July 13, 2017.
 2010 Mathematics Subject Classification: Primary 34C11; 34D10.
 Key words and phrases: h-stability, t_{∞}-similarity, bounded, perturbed differential system.

 Correspondence should be addressed to Yoon Hoe Goo, yhgoo@hanseo.ac.kr.

