BOUNDEDNESS IN THE NONLINEAR PERTURBED DIFFERENTIAL SYSTEMS VIA t_{∞}-SIMILARITY

Yoon Hoe Goo

Abstract. This paper shows that the solutions to the nonlinear perturbed differential system

$$
y^{\prime}=f(t, y)+\int_{t_{0}}^{t} g\left(s, y(s), T_{1} y(s)\right) d s+h\left(t, y(t), T_{2} y(t)\right),
$$

have the bounded property by imposing conditions on the perturbed part

$$
\int_{t_{0}}^{t} g\left(s, y(s), T_{1} y(s)\right) d s, h\left(t, y(t), T_{2} y(t)\right)
$$

and on the fundamental matrix of the unperturbed system $y^{\prime}=f(t, y)$ using the notion of h-stability.

1. Introduction and Preliminaries

We are interested in the relations between the solutions of the unperturbed nonlinear nonautonomous differential system

$$
\begin{equation*}
x^{\prime}(t)=f(t, x(t)), \quad x\left(t_{0}\right)=x_{0} \tag{1.1}
\end{equation*}
$$

and the solutions of the perturbed differential system of (1.1) including two operators T_{1}, T_{2} such that

$$
\begin{equation*}
y^{\prime}=f(t, y)+\int_{t_{0}}^{t} g\left(s, y(s), T_{1} y(s)\right) d s+h\left(t, y(t), T_{2} y(t)\right), y\left(t_{0}\right)=y_{0} \tag{1.2}
\end{equation*}
$$

where $f \in C\left(\mathbb{R}^{+} \times \mathbb{R}^{n}, \mathbb{R}^{n}\right), g, h \in C\left(\mathbb{R}^{+} \times \mathbb{R}^{n} \times \mathbb{R}^{n}, \mathbb{R}^{n}\right)$, $\mathbb{R}^{+}=[0, \infty), f(t, 0)=0$, $g(t, 0,0)=h(t, 0,0)=0$, and $T_{1}, T_{2}: C\left(\mathbb{R}^{+}, \mathbb{R}^{n}\right) \rightarrow C\left(\mathbb{R}^{+}, \mathbb{R}^{n}\right)$ are a continuous operator and \mathbb{R}^{n} is an n-dimensional Euclidean space. We always assume that the Jacobian matrix $f_{x}=\partial f / \partial x$ exists and is continuous on $\mathbb{R}^{+} \times \mathbb{R}^{n}$. The symbol $|\cdot|$ will be used to denote any convenient vector norm in \mathbb{R}^{n}.

[^0]Let $x\left(t, t_{0}, x_{0}\right)$ denote the unique solution of (1.1) with $x\left(t_{0}, t_{0}, x_{0}\right)=x_{0}$, existing on $\left[t_{0}, \infty\right)$. Then we can consider the associated variational systems around the zero solution of (1.1) and around $x(t)$, respectively,

$$
\begin{equation*}
v^{\prime}(t)=f_{x}(t, 0) v(t), v\left(t_{0}\right)=v_{0} \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
z^{\prime}(t)=f_{x}\left(t, x\left(t, t_{0}, x_{0}\right)\right) z(t), z\left(t_{0}\right)=z_{0} . \tag{1.4}
\end{equation*}
$$

The fundamental matrix $\Phi\left(t, t_{0}, x_{0}\right)$ of (1.4) is given by

$$
\Phi\left(t, t_{0}, x_{0}\right)=\frac{\partial}{\partial x_{0}} x\left(t, t_{0}, x_{0}\right),
$$

and $\Phi\left(t, t_{0}, 0\right)$ is the fundamental matrix of (1.3).
We recall some notions of h-stability [16].
Definition 1.1. The system (1.1) (the zero solution $x=0$ of (1.1)) is called an h-system if there exist a constant $c \geq 1$ and a positive continuous function h on \mathbb{R}^{+} such that

$$
|x(t)| \leq c\left|x_{0}\right| h(t) h\left(t_{0}\right)^{-1}
$$

for $t \geq t_{0} \geq 0$ and $\left|x_{0}\right|$ small enough (here $h(t)^{-1}=\frac{1}{h(t)}$).
Definition 1.2. The system (1.1) (the zero solution $x=0$ of (1.1)) is called (hS) h-stable if there exists $\delta>0$ such that (1.1) is an h-system for $\left|x_{0}\right| \leq \delta$ and h is bounded.

Pachpatte $[14,15]$ investigated the stability, boundedness, and the asymptotic behavior of the solutions of perturbed nonlinear systems under some suitable conditions on the perturbation term g and on the operator T. The purpose of this paper is to investigate bounds for solutions of the nonlinear differential systems

The notion of h-stability (hS) was introduced by Pinto $[16,17]$ with the intention of obtaining results about stability for a weakly stable system (at least, weaker than those given exponential asymptotic stability) under some perturbations. That is, Pinto extended the study of exponential asymptotic stability to a variety of reasonable systems called h-systems. Choi, Ryu [5] and Choi, Koo, and Ryu [6] investigated bounds of solutions for nonlinear perturbed systems. Also, Goo [8,9,10] and Goo et al. [3,4] studied the boundedness of solutions for the perturbed differential systems.

Let \mathcal{M} denote the set of all $n \times n$ continuous matrices $A(t)$ defined on \mathbb{R}^{+}and \mathcal{N} be the subset of \mathcal{M} consisting of those nonsingular matrices $S(t)$ that are of class C^{1}
with the property that $S(t)$ and $S^{-1}(t)$ are bounded. The notion of t_{∞}-similarity in \mathcal{M} was introduced by Conti [7].

Definition 1.3. A matrix $A(t) \in \mathcal{M}$ is t_{∞}-similar to a matrix $B(t) \in \mathcal{M}$ if there exists an $n \times n$ matrix $F(t)$ absolutely integrable over \mathbb{R}^{+}, i.e.,

$$
\int_{0}^{\infty}|F(t)| d t<\infty
$$

such that

$$
\begin{equation*}
\dot{S}(t)+S(t) B(t)-A(t) S(t)=F(t) \tag{1.5}
\end{equation*}
$$

for some $S(t) \in \mathcal{N}$.
The notion of t_{∞}-similarity is an equivalence relation in the set of all $n \times n$ continuous matrices on \mathbb{R}^{+}, and it preserves some stability concepts [7, 12].

We give some related properties that we need in the sequal.
Lemma 1.4 ([17]). The linear system

$$
\begin{equation*}
x^{\prime}=A(t) x, x\left(t_{0}\right)=x_{0}, \tag{1.6}
\end{equation*}
$$

where $A(t)$ is an $n \times n$ continuous matrix, is an h-system (respectively h-stable) if and only if there exist $c \geq 1$ and a positive and continuous (respectively bounded) function h defined on \mathbb{R}^{+}such that

$$
\begin{equation*}
\left|\phi\left(t, t_{0}\right)\right| \leq \operatorname{ch}(t) h\left(t_{0}\right)^{-1} \tag{1.7}
\end{equation*}
$$

for $t \geq t_{0} \geq 0$, where $\phi\left(t, t_{0}\right)$ is a fundamental matrix of (1.6).
We need Alekseev formula to compare between the solutions of (1.1) and the solutions of perturbed nonlinear system

$$
\begin{equation*}
y^{\prime}=f(t, y)+g(t, y), y\left(t_{0}\right)=y_{0} \tag{1.8}
\end{equation*}
$$

where $g \in C\left(\mathbb{R}^{+} \times \mathbb{R}^{n}, \mathbb{R}^{n}\right)$ and $g(t, 0)=0$. Let $y(t)=y\left(t, t_{0}, y_{0}\right)$ denote the solution of (1.8) passing through the point $\left(t_{0}, y_{0}\right)$ in $\mathbb{R}^{+} \times \mathbb{R}^{n}$.

The following is a generalization to nonlinear system of the variation of constants formula due to Alekseev [1].

Lemma 1.5 ([2]). Let x and y be a solution of (1.1) and (1.8), respectively. If $y_{0} \in \mathbb{R}^{n}$, then for all $t \geq t_{0}$ such that $x\left(t, t_{0}, y_{0}\right) \in \mathbb{R}^{n}, y\left(t, t_{0}, y_{0}\right) \in \mathbb{R}^{n}$,

$$
y\left(t, t_{0}, y_{0}\right)=x\left(t, t_{0}, y_{0}\right)+\int_{t_{0}}^{t} \Phi(t, s, y(s)) g(s, y(s)) d s
$$

Theorem 1.6 ([5]). If the zero solution of (1.1) is $h S$, then the zero solution of (1.3) is $h S$.

Theorem 1.7 ([6]). Suppose that $f_{x}(t, 0)$ is t_{∞}-similar to $f_{x}\left(t, x\left(t, t_{0}, x_{0}\right)\right)$ for $t \geq$ $t_{0} \geq 0$ and $\left|x_{0}\right| \leq \delta$ for some constant $\delta>0$. If the solution $v=0$ of (1.3) is $h S$, then the solution $z=0$ of (1.4) is $h S$.

Lemma 1.8. (Bihari - type inequality) Let $u, \lambda \in C\left(\mathbb{R}^{+}\right), w \in C((0, \infty))$ and $w(u)$ be nondecreasing in u. Suppose that, for some $c>0$,

$$
u(t) \leq c+\int_{t_{0}}^{t} \lambda(s) w(u(s)) d s, t \geq t_{0} \geq 0
$$

Then

$$
u(t) \leq W^{-1}\left[W(c)+\int_{t_{0}}^{t} \lambda(s) d s\right], t_{0} \leq t<b_{1}
$$

where $W(u)=\int_{u_{0}}^{u} \frac{d s}{w(s)}, W^{-1}(u)$ is the inverse of $W(u)$ and

$$
b_{1}=\sup \left\{t \geq t_{0}: W(c)+\int_{t_{0}}^{t} \lambda(s) d s \in \operatorname{domW}^{-1}\right\}
$$

Lemma 1.9 ([11]). Let $u, \lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5}, \lambda_{6}, \lambda_{7}, \lambda_{8} \in C\left(\mathbb{R}^{+}\right), w \in C((0, \infty))$, and $w(u)$ be nondecreasing in $u, u \leq w(u)$. Suppose that for some $c>0$ and $0 \leq t_{0} \leq t$,

$$
\begin{aligned}
u(t) \leq & c+\int_{t_{0}}^{t} \lambda_{1}(s) u(s) d s+\int_{t_{0}}^{t} \lambda_{2}(s) w(u(s)) d s+\int_{t_{0}}^{t} \lambda_{3}(s) \int_{t_{0}}^{s}\left(\lambda_{4}(\tau) u(\tau)\right. \\
& \left.+\lambda_{5}(\tau) \int_{t_{0}}^{\tau} \lambda_{6}(r) w(u(r)) d r\right) d \tau d s+\int_{t_{0}}^{t} \lambda_{7}(s) \int_{t_{0}}^{s} \lambda_{8}(\tau) w(u(\tau)) d \tau d s .
\end{aligned}
$$

Then

$$
\begin{aligned}
u(t) \leq & W^{-1}\left[W(c)+\int_{t_{0}}^{t}\left(\lambda_{1}(s)+\lambda_{2}(s)+\lambda_{3}(s) \int_{t_{0}}^{s}\left(\lambda_{4}(\tau)+\lambda_{5}(\tau) \int_{t_{0}}^{\tau} \lambda_{6}(r) d r\right) d \tau\right.\right. \\
& \left.\left.+\lambda_{7}(s) \int_{t_{0}}^{s} \lambda_{8}(\tau) d \tau\right) d s\right]
\end{aligned}
$$

where $t_{0} \leq t<b_{1}, W, W^{-1}$ are the same functions as in Lemma 1.8, and

$$
\begin{aligned}
b_{1}=\sup \{ & t \geq t_{0}: W(c)+\int_{t_{0}}^{t}\left(\lambda_{1}(s)+\lambda_{2}(s)+\lambda_{3}(s) \int_{t_{0}}^{s}\left(\lambda_{4}(\tau)\right.\right. \\
& \left.\left.\left.+\lambda_{5}(\tau) \int_{t_{0}}^{\tau} \lambda_{6}(r) d r\right) d \tau+\lambda_{7}(s) \int_{t_{0}}^{s} \lambda_{8}(\tau) d \tau\right) d s \in \operatorname{domW}^{-1}\right\}
\end{aligned}
$$

For the proof we prepare the following lemma.

Corollary 1.10. Let $u, \lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5}, \lambda_{6}, \lambda_{7} \in C\left(\mathbb{R}^{+}\right)$, $w \in C((0, \infty))$, and $w(u)$ be nondecreasing in u, $u \leq w(u)$. Suppose that for some $c>0$ and $0 \leq t_{0} \leq t$,

$$
\begin{aligned}
u(t) \leq & c+\int_{t_{0}}^{t} \lambda_{1}(s) u(s) d s+\int_{t_{0}}^{t} \lambda_{2}(s) \int_{t_{0}}^{s}\left(\lambda_{3}(\tau) u(\tau)\right. \\
& \left.+\lambda_{4}(\tau) \int_{t_{0}}^{\tau} \lambda_{5}(r) w(u(r)) d r\right) d \tau d s+\int_{t_{0}}^{t} \lambda_{6}(s) \int_{t_{0}}^{s} \lambda_{7}(\tau) w(u(\tau)) d \tau d s
\end{aligned}
$$

Then

$$
\begin{aligned}
u(t) \leq & W^{-1}\left[W(c)+\int_{t_{0}}^{t}\left(\lambda_{1}(s)+\lambda_{2}(s) \int_{t_{0}}^{s}\left(\lambda_{3}(\tau)+\lambda_{4}(\tau) \int_{t_{0}}^{\tau} \lambda_{5}(r) d r\right) d \tau\right.\right. \\
& \left.\left.+\lambda_{6}(s) \int_{t_{0}}^{s} \lambda_{7}(\tau) d \tau\right) d s\right]
\end{aligned}
$$

where $t_{0} \leq t<b_{1}, W, W^{-1}$ are the same functions as in Lemma 1.8, and

$$
\begin{aligned}
b_{1}= & \sup \left\{t \geq t_{0}: W(c)+\int_{t_{0}}^{t}\left(\lambda_{1}(s)+\lambda_{2}(s) \int_{t_{0}}^{s}\left(\lambda_{3}(\tau)+\lambda_{4}(\tau) \int_{t_{0}}^{\tau} \lambda_{5}(r) d r\right) d \tau\right.\right. \\
& \left.\left.+\lambda_{6}(s) \int_{t_{0}}^{s} \lambda_{7}(\tau) d \tau\right) d s \in \operatorname{domW}{ }^{-1}\right\}
\end{aligned}
$$

Lemma 1.11 ([3]). Let $u, \lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5}, \lambda_{6} \in C\left(\mathbb{R}^{+}\right), w \in C((0, \infty))$ and $w(u)$ be nondecreasing in u, $u \leq w(u)$. Suppose that for some $c>0$,

$$
\begin{aligned}
u(t) \leq & c+\int_{t_{0}}^{t} \lambda_{1}(s) u(s) d s+\int_{t_{0}}^{t} \lambda_{2}(s) w(u(s)) d s+\int_{t_{0}}^{t} \lambda_{3}(s) \int_{t_{0}}^{s} \lambda_{4}(\tau) u(\tau) d \tau d s \\
& +\int_{t_{0}}^{t} \lambda_{5}(s) \int_{t_{0}}^{s} \lambda_{6}(\tau) w(u(\tau)) d \tau d s, \quad 0 \leq t_{0} \leq t
\end{aligned}
$$

Then
$u(t) \leq W^{-1}\left[W(c)+\int_{t_{0}}^{t}\left(\lambda_{1}(s)+\lambda_{2}(s)+\lambda_{3}(s) \int_{t_{0}}^{s} \lambda_{4}(\tau) d \tau+\lambda_{5}(s) \int_{t_{0}}^{s} \lambda_{6}(\tau) d \tau\right) d s\right]$,
where $t_{0} \leq t<b_{1}, W, W^{-1}$ are the same functions as in Lemma 1.8, and

$$
\begin{aligned}
b_{1}=\sup \{ & t \geq t_{0}: W(c)+\int_{t_{0}}^{t}\left(\lambda_{1}(s)+\lambda_{2}(s)+\lambda_{3}(s) \int_{t_{0}}^{s} \lambda_{4}(\tau) d \tau\right. \\
& \left.\left.+\lambda_{5}(s) \int_{t_{0}}^{s} \lambda_{6}(\tau) d \tau\right) d s \in \operatorname{domW}^{-1}\right\}
\end{aligned}
$$

2. Main Results

In this section, we investigate boundedness for solutions of perturbed functional differential systems using the notion of t_{∞}-similarity.

We need the lemma to prove the following theorem.

Lemma 2.1. Let $u, \lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5}, \lambda_{6}, \lambda_{7}, \lambda_{8} \in C\left(\mathbb{R}^{+}\right), w \in C((0, \infty))$, and $w(u)$ be nondecreasing in u, $u \leq w(u)$. Suppose that for some $c>0$ and $0 \leq t_{0} \leq t$,

$$
\begin{align*}
u(t) \leq & c+\int_{t_{0}}^{t} \lambda_{1}(s) u(s) d s+\int_{t_{0}}^{t} \lambda_{2}(s) \int_{t_{0}}^{s}\left(\lambda_{3}(\tau) u(\tau)+\lambda_{4}(\tau) w(u(\tau))\right. \tag{2.1}\\
& \left.+\lambda_{5}(\tau) \int_{t_{0}}^{\tau} \lambda_{6}(r) u(r) d r\right) d \tau d s+\int_{t_{0}}^{t} \lambda_{7}(s) \int_{t_{0}}^{s} \lambda_{8}(\tau) w(u(\tau)) d \tau d s
\end{align*}
$$

Then

$$
\begin{align*}
u(t) \leq & W^{-1}\left[W(c)+\int_{t_{0}}^{t}\left(\lambda_{1}(s)+\lambda_{2}(s) \int_{t_{0}}^{s}\left(\lambda_{3}(\tau)+\lambda_{4}(\tau)+\lambda_{5}(\tau) \int_{t_{0}}^{\tau} \lambda_{6}(r) d r\right) d \tau\right.\right. \tag{2.2}\\
& \left.\left.+\lambda_{7}(s) \int_{t_{0}}^{s} \lambda_{8}(\tau) d \tau\right) d s\right]
\end{align*}
$$

where $t_{0} \leq t<b_{1}, W, W^{-1}$ are the same functions as in Lemma 1.8, and

$$
\begin{aligned}
b_{1}=\sup \{ & t \geq t_{0}: W(c)+\int_{t_{0}}^{t}\left(\lambda_{1}(s)+\lambda_{2}(s) \int_{t_{0}}^{s}\left(\lambda_{3}(\tau)+\lambda_{4}(\tau)\right.\right. \\
& \left.\left.\left.+\lambda_{5}(\tau) \int_{t_{0}}^{\tau} \lambda_{6}(r) d r\right) d \tau+\lambda_{7}(s) \int_{t_{0}}^{s} \lambda_{8}(\tau) d \tau\right) d s \in \operatorname{domW}^{-1}\right\}
\end{aligned}
$$

Proof. Define a function $v(t)$ by the right member of (2.1) and let us differentiate $v(t)$ to obtain

$$
\begin{aligned}
v^{\prime}(t)= & \lambda_{1}(t) u(t)+\lambda_{2}(t) \int_{t_{0}}^{t}\left(\lambda_{3}(s) u(s)+\lambda_{4}(s) w(u(s))\right. \\
& \left.+\lambda_{5}(s) \int_{t_{0}}^{s} \lambda_{6}(\tau) u(\tau) d \tau\right) d s+\lambda_{7}(t) \int_{t_{0}}^{t} \lambda_{8}(s) w(u(s)) d s .
\end{aligned}
$$

This reduces to

$$
\begin{aligned}
v^{\prime}(t) \leq & \left(\lambda_{1}(t)+\lambda_{2}(t) \int_{t_{0}}^{t}\left(\lambda_{3}(s)+\lambda_{4}(s)+\lambda_{5}(s) \int_{t_{0}}^{s} \lambda_{6}(\tau) d \tau\right) d s\right. \\
& \left.+\lambda_{7}(t) \int_{t_{0}}^{t} \lambda_{8}(s) d s\right) w(v(t)),
\end{aligned}
$$

$t \geq t_{0}$, since $v(t)$ is nondecreasing, $u \leq w(u)$, and $u(t) \leq v(t)$. Now, by integrating the above inequality on $\left[t_{0}, t\right]$ and $v\left(t_{0}\right)=c$, we have

$$
\begin{align*}
v(t) \leq & c+\int_{t_{0}}^{t}\left(\lambda_{1}(s)+\lambda_{2}(s) \int_{t_{0}}^{s}\left(\lambda_{3}(\tau)+\lambda_{4}(\tau)+\lambda_{5}(\tau) \int_{t_{0}}^{\tau} \lambda_{6}(r) d r\right) d \tau\right. \tag{2.3}\\
& \left.+\lambda_{7}(s) \int_{t_{0}}^{s} \lambda_{8}(\tau) d \tau\right) w(v(s)) d s
\end{align*}
$$

By view of Lemma 1.8, (2.3) yields the estimate (2.2).
To obtain the bounded result, the following assumptions are needed:
(H1) $f_{x}(t, 0)$ is t_{∞}-similar to $f_{x}\left(t, x\left(t, t_{0}, x_{0}\right)\right)$ for $t \geq t_{0} \geq 0$ and $\left|x_{0}\right| \leq \delta$ for some constant $\delta>0$.
(H2) The solution $x=0$ of (1.1) is hS with the increasing function h.
(H3) $w(u)$ be nondecreasing in u such that $u \leq w(u)$ and $\frac{1}{v} w(u) \leq w\left(\frac{u}{v}\right)$ for some $v>0$.

Theorem 2.2. Let $a, b, c, k, q \in C\left(\mathbb{R}^{+}\right)$. Suppose that (H1), (H2), (H3), and g in (1.2) satisfies

$$
\begin{equation*}
\left|g\left(t, y, T_{1} y\right)\right| \leq a(t)|y(t)|+b(t) w(|y(t)|)+\left|T_{1} y(t)\right|,\left|T_{1} y(t)\right| \leq b(t) \int_{t_{0}}^{t} k(s)|y(s)| d s \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|h\left(t, y(t), T_{2} y(t)\right)\right| \leq c(t)\left(|y(t)|+\left|T_{2} y(t)\right|\right),\left|T_{2} y(t)\right| \leq \int_{t_{0}}^{t} q(s) w(|y(s)|) d s \tag{2.5}
\end{equation*}
$$

where $a, b, c, k, q, w \in L^{1}\left(\mathbb{R}^{+}\right), w \in C((0, \infty)), T_{1}, T_{2}$ are a continuous operator. Then, any solution $y(t)=y\left(t, t_{0}, y_{0}\right)$ of (1.2) is bounded on $\left[t_{0}, \infty\right)$ and it satisfies

$$
\begin{aligned}
|y(t)| \leq & h(t) W^{-1}\left[W(c)+c_{2} \int_{t_{0}}^{t}\left(c(s)+\int_{t_{0}}^{s}(a(\tau)+b(\tau)\right.\right. \\
& \left.\left.\left.+b(\tau) \int_{t_{0}}^{\tau} k(r) d r\right) d \tau+c(s) \int_{t_{0}}^{\tau} q(\tau) d \tau\right) d s\right]
\end{aligned}
$$

where $t_{0} \leq t<b_{1}, W, W^{-1}$ are the same functions as in Lemma 1.8, and

$$
\begin{aligned}
b_{1}=\sup \{t & \geq t_{0}: W(c)+c_{2} \int_{t_{0}}^{t}\left(c(s)+\int_{t_{0}}^{s}(a(\tau)+b(\tau)\right. \\
& \left.\left.\left.+b(\tau) \int_{t_{0}}^{\tau} k(r) d r\right) d \tau+c(s) \int_{t_{0}}^{\tau} q(\tau) d \tau\right) d s \in \operatorname{domW}^{-1}\right\}
\end{aligned}
$$

Proof. Let $x(t)=x\left(t, t_{0}, y_{0}\right)$ and $y(t)=y\left(t, t_{0}, y_{0}\right)$ be solutions of (1.1) and (1.2), respectively. By Theorem 1.6, since the solution $x=0$ of (1.1) is hS, the solution $v=0$ of (1.3) is hS. Therefore, from (H1), by Theorem 1.7, the solution $z=0$ of (1.4) is hS. Applying the nonlinear variation of constants formula Lemmma 1.5,
together with (2.4) and (2.5), we have

$$
\begin{aligned}
|y(t)| \leq & |x(t)|+\int_{t_{0}}^{t}|\Phi(t, s, y(s))|\left(\int_{t_{0}}^{s}\left|g\left(\tau, y(\tau), T_{1} y(s)\right)\right| d \tau+\left|h\left(s, y(s), T_{2} y(s)\right)\right|\right) d s \\
\leq & c_{1}\left|y_{0}\right| h(t) h\left(t_{0}\right)^{-1}+\int_{t_{0}}^{t} c_{2} h(t) h(s)^{-1}\left(\int_{t_{0}}^{s}(a(\tau)|y(\tau)|+b(\tau) w(|y(\tau)|)\right. \\
& \left.\left.+b(\tau) \int_{t_{0}}^{\tau} k(r)|y(r)| d r\right) d \tau+c(s)\left(|y(s)|+\int_{t_{0}}^{s} q(\tau) w(|y(\tau)|) d \tau\right)\right) d s
\end{aligned}
$$

By the assumptions (H2) and (H3), we obtain

$$
\begin{aligned}
|y(t)| \leq & c_{1}\left|y_{0}\right| h(t) h\left(t_{0}\right)^{-1}+\int_{t_{0}}^{t} c_{2} h(t)\left(c(s) \frac{|y(s)|}{h(s)}\right. \\
& +\int_{t_{0}}^{s}\left(a(\tau) \frac{|y(\tau)|}{h(\tau)}+b(\tau) w\left(\frac{|y(\tau)|}{h(\tau)}\right)+b(\tau) \int_{t_{0}}^{\tau} k(r) \frac{|y(r)|}{h(r)} d r\right) d \tau \\
& \left.+c(s) \int_{t_{0}}^{s} q(\tau) w\left(\frac{|y(\tau)|}{h(\tau)}\right) d \tau\right) d s
\end{aligned}
$$

Define $u(t)=|y(t)||h(t)|^{-1}$. Then, by Lemma 2.1, we have

$$
\begin{aligned}
|y(t)| \leq & h(t) W^{-1}\left[W(c)+c_{2} \int_{t_{0}}^{t}\left(c(s)+\int_{t_{0}}^{s}\left(a(\tau)+b(\tau)+b(\tau) \int_{t_{0}}^{\tau} k(r) d r\right) d \tau\right.\right. \\
& \left.\left.+c(s) \int_{t_{0}}^{\tau} q(\tau) d \tau\right) d s\right]
\end{aligned}
$$

where $c=c_{1}\left|y_{0}\right| h\left(t_{0}\right)^{-1}$. The above estimation yields the desired result since the function h is bounded, and so the proof is complete.

Remark 2.3. Letting $c(t)=0$ in Theorem 2.2, we obtain the same result as that of Theorem 3.1 in [10].

Theorem 2.4. Let $a, b, c, d, k, q \in C\left(\mathbb{R}^{+}\right)$. Suppose that (H1), (H2), (H3), and g in (1.2) satisfies

$$
\begin{align*}
\int_{t_{0}}^{t}\left|g\left(s, y(s), T_{1} y(s)\right)\right| d s & \leq a(t)|y(t)|+b(t) w(|y(t)|)+\left|T_{1} y(t)\right|,\left|T_{1} y(t)\right| \tag{2.6}\\
& \leq b(t) \int_{t_{0}}^{t} k(s) w(|y(s)|) d s
\end{align*}
$$

and
(2.7) $\left|h\left(t, y(t), T_{2} y(t)\right)\right| \leq\left(c(t) w(|y(t)|)+\left|T_{2} y(t)\right|\right),\left|T_{2} y(t)\right| \leq d(t) \int_{t_{0}}^{t} q(s)|y(s)| d s$
where $a, b, c, d, k, q, w \in L^{1}\left(\mathbb{R}^{+}\right), w \in C((0, \infty)), T_{1}, T_{2}$ are a continuous operator. Then, any solution $y(t)=y\left(t, t_{0}, y_{0}\right)$ of (1.2) is bounded on $\left[t_{0}, \infty\right)$ and it satisfies $|y(t)| \leq h(t) W^{-1}\left[W(c)+c_{2} \int_{t_{0}}^{t}\left(a(s)+b(s)+c(s)+b(s) \int_{t_{0}}^{s} k(\tau) d \tau+d(s) \int_{t_{0}}^{s} q(\tau) d \tau\right) d s\right]$, where $t_{0} \leq t<b_{1}, W, W^{-1}$ are the same functions as in Lemma 1.8, and

$$
\begin{aligned}
b_{1}=\sup \{t & \geq t_{0}: W(c)+c_{2} \int_{t_{0}}^{t}(a(s)+b(s)+c(s) \\
& \left.\left.+b(s) \int_{t_{0}}^{s} k(\tau) d \tau+d(s) \int_{t_{0}}^{s} q(\tau) d \tau\right) d s \in \operatorname{domW}^{-1}\right\} .
\end{aligned}
$$

Proof. Let $x(t)=x\left(t, t_{0}, y_{0}\right)$ and $y(t)=y\left(t, t_{0}, y_{0}\right)$ be solutions of (1.1) and (1.2), respectively. By the same argument as in the proof in Theorem 2.2, the solution $z=0$ of (1.4) is hS. Using the nonlinear variation of constants formula Lemma 1.5, together with (2.6) and (2.7), we have

$$
\begin{aligned}
|y(t)| \leq & c_{1}\left|y_{0}\right| h(t) h\left(t_{0}\right)^{-1}+\int_{t_{0}}^{t} c_{2} h(t) h(s)^{-1}(a(s)|y(s)|+(b(s)+c(s)) w(|y(s)|) \\
& \left.+b(s) \int_{t_{0}}^{s} k(\tau) w(|y(\tau)|) d \tau+d(s) \int_{t_{0}}^{s} q(\tau)|y(\tau)| d \tau\right) d s .
\end{aligned}
$$

It follows from (H2) and (H3) that

$$
\begin{aligned}
|y(t)| \leq & c_{1}\left|y_{0}\right| h(t) h\left(t_{0}\right)^{-1}+\int_{t_{0}}^{t} c_{2} h(t)\left(a(s) \frac{|y(s)|}{h(s)}+(b(s)+c(s)) w\left(\frac{|y(s)|}{h(s)}\right)\right. \\
& \left.+b(s) \int_{t_{0}}^{s} k(\tau) w\left(\frac{|y(\tau)|}{h(\tau)}\right) d \tau+d(s) \int_{t_{0}}^{s} q(\tau) \frac{|y(\tau)|}{h(\tau)} d \tau\right) d s .
\end{aligned}
$$

Set $u(t)=|y(t)||h(t)|^{-1}$. Then, by Lemma 1.11, we have

$$
\begin{aligned}
& |y(t)| \leq h(t) W^{-1}\left[W(c)+c_{2} \int_{t_{0}}^{t}\left(a(s)+b(s)+c(s)+b(s) \int_{t_{0}}^{s} k(\tau) d \tau\right.\right. \\
& \left.\left.\quad+d(s) \int_{t_{0}}^{s} q(\tau) d \tau\right) d s\right]
\end{aligned}
$$

where $c=c_{1}\left|y_{0}\right| h\left(t_{0}\right)^{-1}$. Thus, any solution $y(t)=y\left(t, t_{0}, y_{0}\right)$ of (1.2) is bounded on $\left[t_{0}, \infty\right)$, and so the proof is complete.

Remark 2.5. Letting $c(t)=d(t)=0$ in Theorem 2.4, we obtain the same result as that of Theorem 3.7 in [10].

Theorem 2.6. Let $a, b, c, d, k \in C\left(\mathbb{R}^{+}\right)$. Suppose that (H1), (H2), (H3), and g in (1.2) satisfies
$\left|g\left(t, y, T_{1} y\right)\right| \leq a(t)|y(t)|+b(t) w(|y(t)|)+\left|T_{1} y(t)\right|,\left|T_{1} y(t)\right| \leq b(t) \int_{t_{0}}^{t} k(s) w(|y(s)|) d s$ and

$$
\begin{equation*}
\left|h\left(t, y(t), T_{2} y(t)\right)\right| \leq\left(\int_{t_{0}}^{t} c(s) w(|y(s)|) d s+\left|T_{2} y(t)\right|\right),\left|T_{2} y(t)\right| \leq d(t)|y(t)| \tag{2.9}
\end{equation*}
$$

where $a, b, c, d, k, w \in L^{1}\left(\mathbb{R}^{+}\right), w \in C((0, \infty)), T_{1}, T_{2}$ are a continuous operator. Then, any solution $y(t)=y\left(t, t_{0}, y_{0}\right)$ of (1.2) is bounded on $\left[t_{0}, \infty\right)$ and it satisfies

$$
\begin{aligned}
|y(t)| \leq & h(t) W^{-1}\left[W(c)+c_{2} \int_{t_{0}}^{t}\left(d(s)+\int_{t_{0}}^{s}(a(\tau)+b(\tau)+c(\tau)\right.\right. \\
& \left.\left.\left.+b(\tau) \int_{t_{0}}^{\tau} k(r) d r\right) d \tau\right) d s\right]
\end{aligned}
$$

where $t_{0} \leq t<b_{1}, W, W^{-1}$ are the same functions as in Lemma 1.8, and

$$
\begin{aligned}
b_{1}=\sup \{ & t \geq t_{0}: W(c)+c_{2} \int_{t_{0}}^{t}\left(d(s)+\int_{t_{0}}^{s}(a(\tau)+b(\tau)+c(\tau)\right. \\
& \left.\left.\left.+b(\tau) \int_{t_{0}}^{\tau} k(r) d r\right) d \tau\right) d s \in \operatorname{domW}^{-1}\right\} .
\end{aligned}
$$

Proof. Let $x(t)=x\left(t, t_{0}, y_{0}\right)$ and $y(t)=y\left(t, t_{0}, y_{0}\right)$ be solutions of (1.1) and (1.2), respectively. By the same argument as in the proof in Theorem 2.2, the solution $z=0$ of (1.4) is hS. By Lemma 1.4, Lemma 1.5, together with (2.8) and (2.9), we have

$$
\begin{aligned}
|y(t)| \leq & c_{1}\left|y_{0}\right| h(t) h\left(t_{0}\right)^{-1}+\int_{t_{0}}^{t} c_{2} h(t) h(s)^{-1}\left(\int_{t_{0}}^{s}(a(\tau)|y(\tau)|+b(\tau) w(|y(\tau)|)\right. \\
& \left.\left.+b(\tau) \int_{t_{0}}^{\tau} k(r) w(|y(r)|) d r\right) d \tau+\int_{t_{0}}^{s} c(\tau) w(|y(\tau)|) d \tau+d(s)|y(s)|\right) d s
\end{aligned}
$$

Using the assumptions (H2) and (H3), we obtain

$$
\begin{aligned}
|y(t)| \leq & c_{1}\left|y_{0}\right| h(t) h\left(t_{0}\right)^{-1}+\int_{t_{0}}^{t} c_{2} h(t)\left(d(s) \frac{|y(s)|}{h(s)}+\int_{t_{0}}^{s}\left(a(\tau) \frac{|y(\tau)|}{h(\tau)}\right.\right. \\
& \left.\left.+(b(\tau)+c(\tau)) w\left(\frac{|y(\tau)|}{h(\tau)}\right)+b(\tau) \int_{t_{0}}^{\tau} k(r) w\left(\frac{|y(r)|}{h(r)}\right) d r\right) d \tau\right) d s .
\end{aligned}
$$

Let $u(t)=|y(t)||h(t)|^{-1}$. Then, it follows from Corollary 1.10 that we have

$$
\begin{aligned}
|y(t)| \leq & h(t) W^{-1}\left[W(c)+c_{2} \int_{t_{0}}^{t}\left(d(s)+\int_{t_{0}}^{s}(a(\tau)+b(\tau)+c(\tau)\right.\right. \\
& \left.\left.\left.+b(\tau) \int_{t_{0}}^{\tau} k(r) d r\right) d \tau\right) d s\right]
\end{aligned}
$$

where $c=c_{1}\left|y_{0}\right| h\left(t_{0}\right)^{-1}$. From the above estimation, we obtain the desired result. Thus, the theorem is proved.

Remark 2.7. Letting $c(t)=d(t)=0$ in Theorem 2.6, we obtain the same result as that of Theorem 3.5 in [10].

Theorem 2.8. Let $a, b, c, k, q \in C\left(\mathbb{R}^{+}\right)$. Suppose that (H1), (H2), (H3), and g in (1.2) satisfies

$$
\begin{align*}
\int_{t_{0}}^{t}\left|g\left(s, y(s), T_{1} y(s)\right)\right| d s & \leq a(t)|y(t)|+b(t) w(|y(t)|)+\left|T_{1} y(t)\right|,\left|T_{1} y(t)\right| \tag{2.10}\\
& \leq b(t) \int_{t_{0}}^{t} k(s) w(|y(s)|) d s
\end{align*}
$$

and

$$
\begin{equation*}
\left.\left|h\left(t, y(t), T_{2} y(t)\right)\right| \leq c(t)(|y(t)|)+\left|T_{2} y(t)\right|\right),\left|T_{2} y(t)\right| \leq \int_{t_{0}}^{t} q(s)|y(s)| d s \tag{2.11}
\end{equation*}
$$

where $a, b, c, k, q, w \in L^{1}\left(\mathbb{R}^{+}\right), w \in C((0, \infty)), T_{1}, T_{2}$ are a continuous operator. Then, any solution $y(t)=y\left(t, t_{0}, y_{0}\right)$ of (1.2) is bounded on $\left[t_{0}, \infty\right)$ and it satisfies

$$
\begin{aligned}
|y(t)| \leq & h(t) W^{-1}\left[W(c)+c_{2} \int_{t_{0}}^{t}\left(a(s)+b(s)+c(s)+b(s) \int_{t_{0}}^{s} k(\tau) d \tau\right.\right. \\
& \left.\left.+c(s) \int_{t_{0}}^{s} q(\tau) d \tau\right) d s\right]
\end{aligned}
$$

where $t_{0} \leq t<b_{1}, W, W^{-1}$ are the same functions as in Lemma 1.8, and

$$
\begin{aligned}
b_{1}=\sup \{t & \geq t_{0}: W(c)+c_{2} \int_{t_{0}}^{t}(a(s)+b(s)+c(s) \\
& \left.\left.+b(s) \int_{t_{0}}^{s} k(\tau) d \tau+c(s) \int_{t_{0}}^{s} q(\tau) d \tau\right) d s \in \operatorname{domW}^{-1}\right\}
\end{aligned}
$$

Proof. Let $x(t)=x\left(t, t_{0}, y_{0}\right)$ and $y(t)=y\left(t, t_{0}, y_{0}\right)$ be solutions of (1.1) and (1.2), respectively. By the same argument as in the proof in Theorem 2.2, the solution $z=0$ of (1.4) is hS. Using the nonlinear variation of constants formula Lemma 1.5,
together with (2.10) and (2.11), we have

$$
\begin{aligned}
|y(t)| \leq & c_{1}\left|y_{0}\right| h(t) h\left(t_{0}\right)^{-1}+\int_{t_{0}}^{t} c_{2} h(t) h(s)^{-1}((a(s)+c(s))|y(s)|+b(s) w(|y(s)|) \\
& \left.+b(s) \int_{t_{0}}^{s} k(\tau) w(|y(\tau)|) d \tau+c(s) \int_{t_{0}}^{s} q(\tau)|y(\tau)| d \tau\right) d s
\end{aligned}
$$

Using (H2) and (H3), we obtain

$$
\begin{aligned}
|y(t)| \leq & c_{1}\left|y_{0}\right| h(t) h\left(t_{0}\right)^{-1}+\int_{t_{0}}^{t} c_{2} h(t)\left((a(s)+c(s)) \frac{|y(s)|}{h(s)}+b(s) w\left(\frac{|y(s)|}{h(s)}\right)\right. \\
& \left.+b(s) \int_{t_{0}}^{s} k(\tau) w\left(\frac{|y(\tau)|}{h(\tau)}\right) d \tau+c(s) \int_{t_{0}}^{s} q(\tau) \frac{|y(\tau)|}{h(\tau)} d \tau\right) d s .
\end{aligned}
$$

Put $u(t)=|y(t)||h(t)|^{-1}$.Then, an application of Lemma 1.11 yields

$$
\begin{aligned}
|y(t)| \leq & h(t) W^{-1}\left[W(c)+c_{2} \int_{t_{0}}^{t}\left(a(s)+b(s)+c(s)+b(s) \int_{t_{0}}^{s} k(\tau) d \tau\right.\right. \\
& \left.\left.+c(s) \int_{t_{0}}^{s} q(\tau) d \tau\right) d s\right]
\end{aligned}
$$

where $c=c_{1}\left|y_{0}\right| h\left(t_{0}\right)^{-1}$. Then, any solution $y(t)=y\left(t, t_{0}, y_{0}\right)$ of (1.2) is bounded on $\left[t_{0}, \infty\right)$, and so the proof is complete.

Remark 2.9. Letting $c(t)=0$ in Theorem 2.8, we obtain the same result as that of Theorem 3.7 in [10].

Acknowledgment

The author is very grateful for the referee's valuable comments.

References

1. V.M. Alekseev: An estimate for the perturbations of the solutions of ordinary differential equations. Vestn. Mosk. Univ. Ser. I. Math. Mekh. 2 (1961), 28-36(Russian).
2. F. Brauer: Perturbations of nonlinear systems of differential equations. J. Math. Anal. Appl. 14 (1966), 198-206.
3. S.I. Choi \& Y.H. Goo: Boundedness in perturbed nonlinear functional differential systems. J. Chungcheong Math. Soc. 28 (2015), 217-228.
4. \qquad : Lipschitz and asymptotic stability for nonlinear perturbed differential systems. J. Chungcheong Math. Soc. 27 (2014)
5. S.K. Choi \& H.S. Ryu: h-stability in differential systems. Bull. Inst. Math. Acad. Sinica 21 (1993), 245-262.
6. S.K. Choi, N.J. Koo \& H.S. Ryu: h-stability of differential systems via t_{∞}-similarity. Bull. Korean. Math. Soc. 34 (1997), 371-383.
7. R. Conti: Sulla t_{∞}-similitudine tra matricie l'equivalenza asintotica dei sistemi differenziali lineari. Rivista di Mat. Univ. Parma 8 (1957), 43-47.
8. Y.H. Goo: Boundedness in the perturbed differential systems. J. Korean Soc. Math. Edu. Ser.B: Pure Appl. Math. 20 (2013), 223-232.
9. : Boundedness in the perturbed nonlinear differential systems. Far East J. Math. Sci(FJMS) 79 (2013), 205-217.
10. Boundedness in functional differential systems via t_{∞}-similarity. J. Chungcheong Math. Soc., submitted.
11. \qquad : Uniform Lipschitz stability and asymptotic behavior for perturbed differential systems. Far East J. Math. Sciences 99 (2016), 393-412.
12. G.A. Hewer: Stability properties of the equation by t_{∞}-similarity. J. Math. Anal. Appl. 41 (1973), 336-344.
13. V. Lakshmikantham \& S. Leela: Differential and Integral Inequalities: Theory and Applications Vol.. Academic Press, New York and London, 1969.
14. B.G. Pachpatte: Stability and asymptotic behavior of perturbed nonlinear systems. J. diff. equations 16 (1974) 14-25.
15. \qquad : Perturbations of nonlinear systems of differential equations. J. Math. Anal. Appl. 51 (1975), 550-556.
16. M. Pinto: Perturbations of asymptotically stable differential systems. Analysis 4 (1984), 161-175.
17. \qquad : Stability of nonlinear differential systems. Applicable Analysis 43 (1992), 1-20.

Department of Mathematics, Hanseo University, Seosan, Chungnam, 356-706, Republic of Korea
Email address: yhgoo@hanseo.ac.kr

[^0]: Received by the editors February, 2016. Accepted May 13, 2016.
 2010 Mathematics Subject Classification. 34C11, 34D10.
 Key words and phrases. h-stability, t_{∞}-similarity, bounded, nonlinear nonautonomous system.

