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BOUNDEDNESS IN THE NONLINEAR PERTURBED
DIFFERENTIAL SYSTEMS VIA t∞-SIMILARITY

Yoon Hoe Goo

Abstract. This paper shows that the solutions to the nonlinear perturbed differ-
ential system

y′ = f(t, y) +

∫ t

t0

g(s, y(s), T1y(s))ds + h(t, y(t), T2y(t)),

have the bounded property by imposing conditions on the perturbed part
∫ t

t0

g(s, y(s), T1y(s))ds, h(t, y(t), T2y(t)),

and on the fundamental matrix of the unperturbed system y′ = f(t, y) using the
notion of h-stability.

1. Introduction and Preliminaries

We are interested in the relations between the solutions of the unperturbed non-
linear nonautonomous differential system

x′(t) = f(t, x(t)), x(t0) = x0,(1.1)

and the solutions of the perturbed differential system of (1.1) including two operators
T1, T2 such that

(1.2) y′ = f(t, y) +
∫ t

t0

g(s, y(s), T1y(s))ds + h(t, y(t), T2y(t)), y(t0) = y0,

where f ∈ C(R+ × Rn,Rn), g, h ∈ C(R+ × Rn × Rn,Rn), R+ = [0,∞) , f(t, 0) = 0,
g(t, 0, 0) = h(t, 0, 0) = 0, and T1, T2 : C(R+,Rn) → C(R+,Rn) are a continuous
operator and Rn is an n-dimensional Euclidean space. We always assume that the
Jacobian matrix fx = ∂f/∂x exists and is continuous on R+ × Rn. The symbol | · |
will be used to denote any convenient vector norm in Rn.
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Let x(t, t0, x0) denote the unique solution of (1.1) with x(t0, t0, x0) = x0, existing
on [t0,∞). Then we can consider the associated variational systems around the zero
solution of (1.1) and around x(t), respectively,

v′(t) = fx(t, 0)v(t), v(t0) = v0(1.3)

and

z′(t) = fx(t, x(t, t0, x0))z(t), z(t0) = z0.(1.4)

The fundamental matrix Φ(t, t0, x0) of (1.4) is given by

Φ(t, t0, x0) =
∂

∂x0
x(t, t0, x0),

and Φ(t, t0, 0) is the fundamental matrix of (1.3).
We recall some notions of h-stability [16].

Definition 1.1. The system (1.1) (the zero solution x = 0 of (1.1)) is called an
h-system if there exist a constant c ≥ 1 and a positive continuous function h on R+

such that

|x(t)| ≤ c |x0|h(t) h(t0)−1

for t ≥ t0 ≥ 0 and |x0| small enough (here h(t)−1 = 1
h(t)).

Definition 1.2. The system (1.1) (the zero solution x = 0 of (1.1)) is called
(hS)h-stable if there exists δ > 0 such that (1.1) is an h-system for |x0| ≤ δ and h

is bounded.

Pachpatte[14, 15] investigated the stability, boundedness, and the asymptotic be-
havior of the solutions of perturbed nonlinear systems under some suitable conditions
on the perturbation term g and on the operator T . The purpose of this paper is to
investigate bounds for solutions of the nonlinear differential systems

The notion of h-stability (hS) was introduced by Pinto [16,17] with the intention
of obtaining results about stability for a weakly stable system (at least, weaker than
those given exponential asymptotic stability) under some perturbations. That is,
Pinto extended the study of exponential asymptotic stability to a variety of reason-
able systems called h-systems. Choi, Ryu [5] and Choi, Koo, and Ryu [6] investigated
bounds of solutions for nonlinear perturbed systems. Also, Goo [8,9,10] and Goo et
al. [3,4] studied the boundedness of solutions for the perturbed differential systems.

Let M denote the set of all n×n continuous matrices A(t) defined on R+ and N
be the subset of M consisting of those nonsingular matrices S(t) that are of class C1
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with the property that S(t) and S−1(t) are bounded. The notion of t∞-similarity in
M was introduced by Conti [7].

Definition 1.3. A matrix A(t) ∈ M is t∞-similar to a matrix B(t) ∈ M if there
exists an n× n matrix F (t) absolutely integrable over R+, i.e.,∫ ∞

0
|F (t)|dt < ∞

such that

Ṡ(t) + S(t)B(t)−A(t)S(t) = F (t)(1.5)

for some S(t) ∈ N .

The notion of t∞-similarity is an equivalence relation in the set of all n × n

continuous matrices on R+, and it preserves some stability concepts [7, 12].
We give some related properties that we need in the sequal.

Lemma 1.4 ([17]). The linear system

x′ = A(t)x, x(t0) = x0,(1.6)

where A(t) is an n × n continuous matrix, is an h-system (respectively h-stable) if
and only if there exist c ≥ 1 and a positive and continuous (respectively bounded)
function h defined on R+ such that

|φ(t, t0)| ≤ c h(t) h(t0)−1(1.7)

for t ≥ t0 ≥ 0, where φ(t, t0) is a fundamental matrix of (1.6).

We need Alekseev formula to compare between the solutions of (1.1) and the
solutions of perturbed nonlinear system

y′ = f(t, y) + g(t, y), y(t0) = y0,(1.8)

where g ∈ C(R+×Rn,Rn) and g(t, 0) = 0. Let y(t) = y(t, t0, y0) denote the solution
of (1.8) passing through the point (t0, y0) in R+ × Rn.

The following is a generalization to nonlinear system of the variation of constants
formula due to Alekseev [1].

Lemma 1.5 ([2]). Let x and y be a solution of (1.1) and (1.8), respectively. If
y0 ∈ Rn, then for all t ≥ t0 such that x(t, t0, y0) ∈ Rn, y(t, t0, y0) ∈ Rn,

y(t, t0, y0) = x(t, t0, y0) +
∫ t

t0

Φ(t, s, y(s)) g(s, y(s)) ds.
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Theorem 1.6 ([5]). If the zero solution of (1.1) is hS, then the zero solution of
(1.3) is hS.

Theorem 1.7 ([6]). Suppose that fx(t, 0) is t∞-similar to fx(t, x(t, t0, x0)) for t ≥
t0 ≥ 0 and |x0| ≤ δ for some constant δ > 0. If the solution v = 0 of (1.3) is hS,
then the solution z = 0 of (1.4) is hS.

Lemma 1.8. (Bihari − type inequality) Let u, λ ∈ C(R+), w ∈ C((0,∞)) and
w(u) be nondecreasing in u. Suppose that, for some c > 0,

u(t) ≤ c +
∫ t

t0

λ(s)w(u(s))ds, t ≥ t0 ≥ 0.

Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

λ(s)ds
]
, t0 ≤ t < b1,

where W (u) =
∫ u
u0

ds
w(s) , W−1(u) is the inverse of W (u) and

b1 = sup
{

t ≥ t0 : W (c) +
∫ t

t0

λ(s)ds ∈ domW−1
}

.

Lemma 1.9 ([11]). Let u, λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8 ∈ C(R+), w ∈ C((0,∞)), and
w(u) be nondecreasing in u, u ≤ w(u). Suppose that for some c > 0 and 0 ≤ t0 ≤ t,

u(t) ≤ c +
∫ t

t0

λ1(s)u(s)ds +
∫ t

t0

λ2(s)w(u(s))ds +
∫ t

t0

λ3(s)
∫ s

t0

(λ4(τ)u(τ)

+λ5(τ)
∫ τ

t0

λ6(r)w(u(r))dr)dτds +
∫ t

t0

λ7(s)
∫ s

t0

λ8(τ)w(u(τ))dτds.

Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

(
λ1(s) + λ2(s) + λ3(s)

∫ s

t0

(λ4(τ) + λ5(τ)
∫ τ

t0

λ6(r)dr)dτ

+λ7(s)
∫ s

t0

λ8(τ)dτ
)
ds

]
,

where t0 ≤ t < b1, W , W−1 are the same functions as in Lemma 1.8, and

b1 = sup
{

t ≥ t0 : W (c) +
∫ t

t0

(
λ1(s) + λ2(s) + λ3(s)

∫ s

t0

(λ4(τ)

+λ5(τ)
∫ τ

t0

λ6(r)dr)dτ + λ7(s)
∫ s

t0

λ8(τ)dτ
)
ds ∈ domW−1

}
.

For the proof we prepare the following lemma.
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Corollary 1.10. Let u, λ1, λ2, λ3, λ4, λ5, λ6, λ7 ∈ C(R+), w ∈ C((0,∞)), and w(u)
be nondecreasing in u, u ≤ w(u). Suppose that for some c > 0 and 0 ≤ t0 ≤ t,

u(t) ≤ c +
∫ t

t0

λ1(s)u(s)ds +
∫ t

t0

λ2(s)
∫ s

t0

(
λ3(τ)u(τ)

+λ4(τ)
∫ τ

t0

λ5(r)w(u(r))dr
)
dτds +

∫ t

t0

λ6(s)
∫ s

t0

λ7(τ)w(u(τ))dτds.

Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

(
λ1(s) + λ2(s)

∫ s

t0

(λ3(τ) + λ4(τ)
∫ τ

t0

λ5(r)dr)dτ

+λ6(s)
∫ s

t0

λ7(τ)dτ
)
ds

]
,

where t0 ≤ t < b1, W , W−1 are the same functions as in Lemma 1.8, and

b1 = sup
{

t ≥ t0 : W (c) +
∫ t

t0

(
λ1(s) + λ2(s)

∫ s

t0

(λ3(τ) + λ4(τ)
∫ τ

t0

λ5(r)dr)dτ

+λ6(s)
∫ s

t0

λ7(τ)dτ
)
ds ∈ domW−1

}
.

Lemma 1.11 ([3]). Let u, λ1, λ2, λ3, λ4, λ5, λ6 ∈ C(R+), w ∈ C((0,∞)) and w(u)
be nondecreasing in u, u ≤ w(u). Suppose that for some c > 0,

u(t) ≤ c +
∫ t

t0

λ1(s)u(s)ds +
∫ t

t0

λ2(s)w(u(s))ds +
∫ t

t0

λ3(s)
∫ s

t0

λ4(τ)u(τ)dτds

+
∫ t

t0

λ5(s)
∫ s

t0

λ6(τ)w(u(τ))dτds, 0 ≤ t0 ≤ t.

Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

(
λ1(s) + λ2(s) + λ3(s)

∫ s

t0

λ4(τ)dτ + λ5(s)
∫ s

t0

λ6(τ)dτ
)
ds

]
,

where t0 ≤ t < b1, W , W−1 are the same functions as in Lemma 1.8, and

b1 = sup
{

t ≥ t0 : W (c) +
∫ t

t0

(
λ1(s) + λ2(s) + λ3(s)

∫ s

t0

λ4(τ)dτ

+λ5(s)
∫ s

t0

λ6(τ)dτ
)
ds ∈ domW−1

}
.

2. Main Results

In this section, we investigate boundedness for solutions of perturbed functional
differential systems using the notion of t∞-similarity.

We need the lemma to prove the following theorem.
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Lemma 2.1. Let u, λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8 ∈ C(R+), w ∈ C((0,∞)), and w(u)
be nondecreasing in u, u ≤ w(u). Suppose that for some c > 0 and 0 ≤ t0 ≤ t,

(2.1)
u(t) ≤ c +

∫ t

t0

λ1(s)u(s)ds +
∫ t

t0

λ2(s)
∫ s

t0

(λ3(τ)u(τ) + λ4(τ)w(u(τ))

+ λ5(τ)
∫ τ

t0

λ6(r)u(r)dr)dτds +
∫ t

t0

λ7(s)
∫ s

t0

λ8(τ)w(u(τ))dτds.

Then
(2.2)

u(t) ≤ W−1
[
W (c) +

∫ t

t0

(
λ1(s) + λ2(s)

∫ s

t0

(λ3(τ) + λ4(τ) + λ5(τ)
∫ τ

t0

λ6(r)dr)dτ

+ λ7(s)
∫ s

t0

λ8(τ)dτ
)
ds

]
,

where t0 ≤ t < b1, W , W−1 are the same functions as in Lemma 1.8, and

b1 = sup
{

t ≥ t0 : W (c) +
∫ t

t0

(λ1(s) + λ2(s)
∫ s

t0

(λ3(τ) + λ4(τ)

+λ5(τ)
∫ τ

t0

λ6(r)dr)dτ + λ7(s)
∫ s

t0

λ8(τ)dτ)ds ∈ domW−1
}

.

Proof. Define a function v(t) by the right member of (2.1) and let us differentiate
v(t) to obtain

v′(t) = λ1(t)u(t) + λ2(t)
∫ t

t0

(
λ3(s)u(s) + λ4(s)w(u(s))

+λ5(s)
∫ s

t0

λ6(τ)u(τ)dτ
)
ds + λ7(t)

∫ t

t0

λ8(s)w(u(s))ds.

This reduces to

v′(t) ≤
(
λ1(t) + λ2(t)

∫ t

t0

(λ3(s) + λ4(s) + λ5(s)
∫ s

t0

λ6(τ)dτ)ds

+λ7(t)
∫ t

t0

λ8(s)ds
)
w(v(t)),

t ≥ t0, since v(t) is nondecreasing, u ≤ w(u), and u(t) ≤ v(t). Now, by integrating
the above inequality on [t0, t] and v(t0) = c, we have

(2.3)
v(t) ≤ c +

∫ t

t0

(
λ1(s) + λ2(s)

∫ s

t0

(λ3(τ) + λ4(τ) + λ5(τ)
∫ τ

t0

λ6(r)dr)dτ

+ λ7(s)
∫ s

t0

λ8(τ)dτ
)
w(v(s))ds.
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By view of Lemma 1.8, (2.3) yields the estimate (2.2). ¤

To obtain the bounded result, the following assumptions are needed:
(H1) fx(t, 0) is t∞-similar to fx(t, x(t, t0, x0)) for t ≥ t0 ≥ 0 and |x0| ≤ δ for

some constant δ > 0.
(H2) The solution x = 0 of (1.1) is hS with the increasing function h.
(H3) w(u) be nondecreasing in u such that u ≤ w(u) and 1

vw(u) ≤ w(u
v ) for some

v > 0.

Theorem 2.2. Let a, b, c, k, q ∈ C(R+). Suppose that (H1), (H2), (H3), and g in
(1.2) satisfies
(2.4)

|g(t, y, T1y)| ≤ a(t)|y(t)|+ b(t)w(|y(t)|) + |T1y(t)|, |T1y(t)| ≤ b(t)
∫ t

t0

k(s)|y(s)|ds

and

(2.5) |h(t, y(t), T2y(t))| ≤ c(t)
(
|y(t)|+ |T2y(t)|

)
, |T2y(t)| ≤

∫ t

t0

q(s)w(|y(s)|)ds,

where a, b, c, k, q, w ∈ L1(R+), w ∈ C((0,∞)), T1, T2 are a continuous operator.
Then, any solution y(t) = y(t, t0, y0) of (1.2) is bounded on [t0,∞) and it satisfies

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

(
c(s) +

∫ s

t0

(a(τ) + b(τ)

+b(τ)
∫ τ

t0

k(r)dr)dτ + c(s)
∫ τ

t0

q(τ)dτ
)
ds

]
,

where t0 ≤ t < b1, W , W−1 are the same functions as in Lemma 1.8, and

b1 = sup
{

t ≥ t0 : W (c) + c2

∫ t

t0

(
c(s) +

∫ s

t0

(a(τ) + b(τ)

+b(τ)
∫ τ

t0

k(r)dr)dτ + c(s)
∫ τ

t0

q(τ)dτ
)
ds ∈ domW−1

}
.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of (1.1) and (1.2),
respectively. By Theorem 1.6, since the solution x = 0 of (1.1) is hS, the solution
v = 0 of (1.3) is hS. Therefore, from (H1), by Theorem 1.7, the solution z = 0
of (1.4) is hS. Applying the nonlinear variation of constants formula Lemmma 1.5,
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together with (2.4) and (2.5), we have

|y(t)|≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|
(∫ s

t0

|g(τ, y(τ), T1y(s))|dτ + |h(s, y(s), T2y(s))|
)
ds

≤ c1|y0|h(t) h(t0)−1 +
∫ t

t0

c2h(t)h(s)−1
(∫ s

t0

(a(τ)|y(τ)|+ b(τ)w(|y(τ)|)

+b(τ)
∫ τ

t0

k(r)|y(r)|dr)dτ + c(s)(|y(s)|+
∫ s

t0

q(τ)w(|y(τ)|)dτ)
)
ds.

By the assumptions (H2) and (H3), we obtain

|y(t)| ≤ c1|y0|h(t) h(t0)−1 +
∫ t

t0

c2h(t)
(
c(s)

|y(s)|
h(s)

+
∫ s

t0

(
a(τ)

|y(τ)|
h(τ)

+ b(τ)w(
|y(τ)|
h(τ)

) + b(τ)
∫ τ

t0

k(r)
|y(r)|
h(r)

dr)dτ

+c(s)
∫ s

t0

q(τ)w(
|y(τ)|
h(τ)

)dτ
)
ds.

Define u(t) = |y(t)||h(t)|−1. Then, by Lemma 2.1, we have

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

(
c(s) +

∫ s

t0

(a(τ) + b(τ) + b(τ)
∫ τ

t0

k(r)dr)dτ

+c(s)
∫ τ

t0

q(τ)dτ
)
ds

]
,

where c = c1|y0|h(t0)−1. The above estimation yields the desired result since the
function h is bounded, and so the proof is complete. ¤

Remark 2.3. Letting c(t) = 0 in Theorem 2.2, we obtain the same result as that
of Theorem 3.1 in [10].

Theorem 2.4. Let a, b, c, d, k, q ∈ C(R+). Suppose that (H1), (H2), (H3), and g in
(1.2) satisfies

∫ t

t0

|g(s, y(s), T1y(s))|ds ≤ a(t)|y(t)|+ b(t)w(|y(t)|) + |T1y(t)|, |T1y(t)|(2.6)

≤ b(t)
∫ t

t0

k(s)w(|y(s)|)ds

and

(2.7) |h(t, y(t), T2y(t))| ≤
(
c(t)w(|y(t)|) + |T2y(t)|

)
, |T2y(t)| ≤ d(t)

∫ t

t0

q(s)|y(s)|ds
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where a, b, c, d, k, q, w ∈ L1(R+), w ∈ C((0,∞)), T1, T2 are a continuous operator.
Then, any solution y(t) = y(t, t0, y0) of (1.2) is bounded on [t0,∞) and it satisfies

|y(t)| ≤ h(t)W−1
[
W (c)+c2

∫ t

t0

(
a(s)+b(s)+c(s)+b(s)

∫ s

t0

k(τ)dτ+d(s)
∫ s

t0

q(τ)dτ
)
ds

]
,

where t0 ≤ t < b1, W , W−1 are the same functions as in Lemma 1.8, and

b1 = sup
{

t ≥ t0 : W (c) + c2

∫ t

t0

(
a(s) + b(s) + c(s)

+b(s)
∫ s

t0

k(τ)dτ + d(s)
∫ s

t0

q(τ)dτ
)
ds ∈ domW−1

}
.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of (1.1) and (1.2),
respectively. By the same argument as in the proof in Theorem 2.2, the solution
z = 0 of (1.4) is hS. Using the nonlinear variation of constants formula Lemma 1.5,
together with (2.6) and (2.7), we have

|y(t)| ≤ c1|y0|h(t) h(t0)−1 +
∫ t

t0

c2h(t)h(s)−1
(
a(s)|y(s)|+ (b(s) + c(s))w(|y(s)|)

+b(s)
∫ s

t0

k(τ)w(|y(τ)|)dτ + d(s)
∫ s

t0

q(τ)|y(τ)|dτ
)
ds.

It follows from (H2) and (H3) that

|y(t)| ≤ c1|y0|h(t) h(t0)−1 +
∫ t

t0

c2h(t)
(
a(s)

|y(s)|
h(s)

+ (b(s) + c(s))w(
|y(s)|
h(s)

)

+b(s)
∫ s

t0

k(τ)w(
|y(τ)|
h(τ)

)dτ + d(s)
∫ s

t0

q(τ)
|y(τ)|
h(τ)

dτ
)
ds.

Set u(t) = |y(t)||h(t)|−1. Then, by Lemma 1.11, we have

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

(
a(s) + b(s) + c(s) + b(s)

∫ s

t0

k(τ)dτ

+d(s)
∫ s

t0

q(τ)dτ
)
ds

]
,

where c = c1|y0|h(t0)−1. Thus, any solution y(t) = y(t, t0, y0) of (1.2) is bounded
on [t0,∞), and so the proof is complete. ¤

Remark 2.5. Letting c(t) = d(t) = 0 in Theorem 2.4, we obtain the same result as
that of Theorem 3.7 in [10].
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Theorem 2.6. Let a, b, c, d, k ∈ C(R+). Suppose that (H1), (H2), (H3), and g in
(1.2) satisfies
(2.8)

|g(t, y, T1y)| ≤ a(t)|y(t)|+ b(t)w(|y(t)|) + |T1y(t)|, |T1y(t)| ≤ b(t)
∫ t

t0

k(s)w(|y(s)|)ds

and

(2.9) |h(t, y(t), T2y(t))| ≤
( ∫ t

t0

c(s)w(|y(s)|)ds + |T2y(t)|
)
, |T2y(t)| ≤ d(t)|y(t)|

where a, b, c, d, k, w ∈ L1(R+), w ∈ C((0,∞)), T1, T2 are a continuous operator.
Then, any solution y(t) = y(t, t0, y0) of (1.2) is bounded on [t0,∞) and it satisfies

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

(
d(s) +

∫ s

t0

(a(τ) + b(τ) + c(τ)

+b(τ)
∫ τ

t0

k(r)dr)dτ
)
ds

]

where t0 ≤ t < b1, W , W−1 are the same functions as in Lemma 1.8, and

b1 = sup
{

t ≥ t0 : W (c) + c2

∫ t

t0

(
d(s) +

∫ s

t0

(a(τ) + b(τ) + c(τ)

+b(τ)
∫ τ

t0

k(r)dr)dτ
)
ds ∈ domW−1

}
.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of (1.1) and (1.2),
respectively. By the same argument as in the proof in Theorem 2.2, the solution
z = 0 of (1.4) is hS. By Lemma 1.4, Lemma 1.5, together with (2.8) and (2.9), we
have

|y(t)| ≤ c1|y0|h(t) h(t0)−1 +
∫ t

t0

c2h(t)h(s)−1
(∫ s

t0

(a(τ)|y(τ)|+ b(τ)w(|y(τ)|)

+b(τ)
∫ τ

t0

k(r)w(|y(r)|)dr)dτ +
∫ s

t0

c(τ)w(|y(τ)|)dτ + d(s)|y(s)|
)
ds.

Using the assumptions (H2) and (H3), we obtain

|y(t)| ≤ c1|y0|h(t) h(t0)−1 +
∫ t

t0

c2h(t)
(
d(s)

|y(s)|
h(s)

+
∫ s

t0

(a(τ)
|y(τ)|
h(τ)

+(b(τ) + c(τ))w(
|y(τ)|
h(τ)

) + b(τ)
∫ τ

t0

k(r)w(
|y(r)|
h(r)

)dr)dτ
)
ds.
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Let u(t) = |y(t)||h(t)|−1. Then, it follows from Corollary 1.10 that we have

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

(
d(s) +

∫ s

t0

(a(τ) + b(τ) + c(τ)

+b(τ)
∫ τ

t0

k(r)dr)dτ
)
ds

]
,

where c = c1|y0|h(t0)−1. From the above estimation, we obtain the desired result.
Thus, the theorem is proved. ¤

Remark 2.7. Letting c(t) = d(t) = 0 in Theorem 2.6, we obtain the same result as
that of Theorem 3.5 in [10].

Theorem 2.8. Let a, b, c, k, q ∈ C(R+). Suppose that (H1), (H2), (H3), and g in
(1.2) satisfies

∫ t

t0

|g(s, y(s), T1y(s))|ds ≤ a(t)|y(t)|+ b(t)w(|y(t)|) + |T1y(t)|, |T1y(t)|(2.10)

≤ b(t)
∫ t

t0

k(s)w(|y(s)|)ds

and

(2.11) |h(t, y(t), T2y(t))| ≤ c(t)
(
|y(t)|) + |T2y(t)|

)
, |T2y(t)| ≤

∫ t

t0

q(s)|y(s)|ds

where a, b, c, k, q, w ∈ L1(R+), w ∈ C((0,∞)), T1, T2 are a continuous operator.
Then, any solution y(t) = y(t, t0, y0) of (1.2) is bounded on [t0,∞) and it satisfies

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

(
a(s) + b(s) + c(s) + b(s)

∫ s

t0

k(τ)dτ

+c(s)
∫ s

t0

q(τ)dτ
)
ds

]
,

where t0 ≤ t < b1, W , W−1 are the same functions as in Lemma 1.8, and

b1 = sup
{

t ≥ t0 : W (c) + c2

∫ t

t0

(
a(s) + b(s) + c(s)

+b(s)
∫ s

t0

k(τ)dτ + c(s)
∫ s

t0

q(τ)dτ
)
ds ∈ domW−1

}
.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of (1.1) and (1.2),
respectively. By the same argument as in the proof in Theorem 2.2, the solution
z = 0 of (1.4) is hS. Using the nonlinear variation of constants formula Lemma 1.5,
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together with (2.10) and (2.11), we have

|y(t)| ≤ c1|y0|h(t) h(t0)−1 +
∫ t

t0

c2h(t)h(s)−1
(
(a(s) + c(s))|y(s)|+ b(s)w(|y(s)|)

+b(s)
∫ s

t0

k(τ)w(|y(τ)|)dτ + c(s)
∫ s

t0

q(τ)|y(τ)|dτ
)
ds.

Using (H2) and (H3), we obtain

|y(t)| ≤ c1|y0|h(t) h(t0)−1 +
∫ t

t0

c2h(t)
(
(a(s) + c(s))

|y(s)|
h(s)

+ b(s)w(
|y(s)|
h(s)

)

+b(s)
∫ s

t0

k(τ)w(
|y(τ)|
h(τ)

)dτ + c(s)
∫ s

t0

q(τ)
|y(τ)|
h(τ)

dτ
)
ds.

Put u(t) = |y(t)||h(t)|−1.Then, an application of Lemma 1.11 yields

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

(a(s) + b(s) + c(s) + b(s)
∫ s

t0

k(τ)dτ

+c(s)
∫ s

t0

q(τ)dτ)ds
]
,

where c = c1|y0|h(t0)−1. Then, any solution y(t) = y(t, t0, y0) of (1.2) is bounded
on [t0,∞), and so the proof is complete. ¤

Remark 2.9. Letting c(t) = 0 in Theorem 2.8, we obtain the same result as that
of Theorem 3.7 in [10].
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