Let n be a fixed positive integer, R be a 2n!-torsion free prime ring and $\mu$, $\nu$ be a pair of generalized derivations on R. If < $\mu^2(x)+\nu(x),\;x^n$ > = 0 for all x $\in$ R, then $\mu$ and $\nu$ are either left multipliers or right multipliers. Let n be a fixed positive integer, R be a noncommutative 2n!-torsion free prime ring with the center $C_R$ and d, g be a pair of derivations on R. If < $d^2(x)+g(x)$, $x^n$ > $\in$$C_R$ for all x $\in$ R, then d = g = 0. Then we apply these purely algebraic techniques to obtain several range inclusion results of pair of (generalized-)derivations on a Banach algebra.
Let R be a prime ring, I a nonzero ideal of R, $d$ a derivation of R, $m({\geq}1)$, $n({\geq}1)$ two fixed integers and $a{\in}R$. (i) If $a((d(x)y+xd(y)+d(y)x+yd(x))^n-(xy+yx))^m=0$ for all $x,y{\in}I$, then either $a=0$ or R is commutative; (ii) If $char(R){\neq}2$ and $a((d(x)y+xd(y)+d(y)x+yd(x))^n-(xy+yx)){\in}Z(R)$ for all $x,y{\in}I$, then either $a=0$ or R is commutative.
Let R be a commutative ring with identity, X the set of all nonzero, nonunits of R and G the group of all units of R. We will investigate some ring theoretic properties of R by considering $\Gamma$(R), the zero-divisor graph of R, under the regular action on X by G as follows: (1) If R is a ring such that X is a union of a finite number of orbits under the regular action on X by G, then there is a vertex of $\Gamma$(R) which is adjacent to every other vertex in $\Gamma$(R) if and only if R is a local ring or $R\;{\simeq}\;\mathbb{Z}_2\;{\times}\;F$ where F is a field; (2) If R is a local ring such that X is a union of n distinct orbits under the regular action of G on X, then all ideals of R consist of {{0}, J, $J^2$, $\ldots$, $J^n$, R} where J is the Jacobson radical of R; (3) If R is a ring such that X is a union of a finite number of orbits under the regular action on X by G, then the number of all ideals is finite and is greater than equal to the number of orbits.
This study investigated on the photolytic degradation of Triclosan by E-beam process. The optimization of process was investigated during a series of batch experiments by design of experiments(DOEs). The DOE was one of the statistical application that was used for designed the response surface to determine the effects of each parameters. The responses were applied as removal rate of Triclosan(%, $Y_1$) and TOC removal rate(%, $Y_2$). Two independent variables were concentration of Triclosan and irradiation intensity that were designed as "$x_1$" and irradiation intensity was designed as "$x_2$". The regression equation in coded parameter between the Triclosan removal efficiencies(%) and TOC removal efficiencies(%) was $Y_1=63-12.4335x_1+15.1835x_2+5.8125x{_1}^2-5.6875x{_2}^2-0.75x_1x_2(R^2=95.1%,\;R^2(Adj)=91.7%)$ and $Y_2=46-8.8462x_1+11.7175x_2-0.75x{_1}^2-6.25x{_2}^2(R^2=98.7%,\;R^2(Adj)=97.7%)$, respectively. The model predictions agreed well with the experimentally observed results $R^2$ and $R^2(Adj)$ over 90% within both of $Y_1$ and $Y_2$. This result shows that the regression model express well about the effects of parameters on E-beam process and the statistical method was successfully applied.
Let R be a prime ring, I a nonzero ideal of R, d a derivation of R and n a fixed positive integer. (i) If (d(x)y+xd(y)+d(y)x+$yd(x))^n$ = xy + yx for all x, y $\in$ I, then R is commutative. (ii) If char R $\neq$ = 2 and (d(x)y + xd(y) + d(y)x + $yd(x))^n$ - (xy + yx) is central for all x, y $\in$ I, then R is commutative. We also examine the case where R is a semiprime ring.
Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
/
2008.06a
/
pp.21-22
/
2008
In the paper, we report several experimental data capable of evaluating the phase transformation characteristics of $Ag_x(Ge_2Sb_2Te_5)_{1-x}$ (x =0, 0.05, 0.1) thin films. The $Ag_x(Ge_2Sb_2Te_5)_{1-x}$ phase change thin films have been prepared by thermal evaporation. The crystallization characteristics of amorphous$Ag_x(Ge_2Sb_2Te_5)_{1-x}$ thin films were investigated by using nano-pulse scanner with 658 nm laser diode (power; 1~17 mW, pulse duration; 10~460 ns) and XRD measurement. It was found that the more Ag is doped, the more crystallization speed was 50 improved. In comparision with $Ge_2Sb_2Te_5$ thin film, the sheet resistance$(R_{amor})$ of the amorphous $Ag_x(Ge_2Sb_2Te_5)_{1-x}$ thin films were found to be lager than that of $Ge_2Sb_2Te_5$ film($R_{amor}$$\sim10^7\Omega/\square$ and $R_{cryst}$ 10 $\Omega/\square$). That is, the ratio of $R_{amor}/R_{cryst}$ was evaluates to be $\sim10^6$ This is very helpful to writing current reduction of phase-change random acess memory.
Y. Hirano introduced the concept of a quasi-Armendariz ring which extends both Armendariz rings and semiprime rings. A ring R is called quasi-Armendariz if $a_iRb_j$ = 0 for each i, j whenever polynomials $f(x)\;=\;\sum_{i=0}^ma_ix^i$, $g(x)\;=\;\sum_{j=0}^mb_jx^j\;{\in}\;R[x]$ satisfy f(x)R[x]g(x) = 0. In this paper, we first extend the quasi-Armendariz property of semiprime rings to the skew polynomial rings, that is, we show that if R is a semiprime ring with an epimorphism $\sigma$, then f(x)R[x; $\sigma$]g(x) = 0 implies $a_iR{\sigma}^{i+k}(b_j)=0$ for any integer k $\geq$ 0 and i, j, where $f(x)\;=\;\sum_{i=0}^ma_ix^i$, $g(x)\;=\;\sum_{j=0}^mb_jx^j\;{\in}\;R[x,\;{\sigma}]$. Moreover, we extend this property to the skew monoid rings, the Ore extensions of several types, and skew power series ring, etc. Next we define $\sigma$-skew quasi-Armendariz rings for an endomorphism $\sigma$ of a ring R. Then we study several extensions of $\sigma$-skew quasi-Armendariz rings which extend known results for quasi-Armendariz rings and $\sigma$-skew Armendariz rings.
Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
/
2001.05c
/
pp.157-160
/
2001
We have investigated the Dielectric and Piezoelectric properties of $xPb(R_{1/2}Ta_{1/2})O_3-(1-x)Pb(Zr_{0.52}Ti_{0.48})O_3$ (R=Al,Y) solid solutions in which R ions are substituted for Al and Y ions. The maximum value of electromechanical coupling factor kp of 55% and 51% were obtained at the composition of 5mol% PAT and 5mol% PYT. However mechanical quality factor$(Q_m)$ had a minimum value of 44 and 69 at the composition of 5mol% PAT and 5mol% PYT. Also, the maximum value of piezoelectctric constant of $d_{33}(329[pC/N])$ and $d_{33}(310[pC/N])$ were obtained at the composition of 5mol% PAT and 5mol% PYT.
단위원을 가지는 하환환에 있어서의 Prime Spectrum에 관하여 다음 세가지 사실을 증명하였다. 1. X를 환 R의 prime spectrum, C(X)를 X에서 정의되는 실연적함수의 환, X를 C(X)의 maximal spectrum이라 하면 X는 C(X)의 prime spectrum의 부분공간으로서의 한 T-space로 된다. N을 환 R의 nilradical이라 하면, R/N이 regula 이면 X와 X는 위상동형이다. 2. f: R$\longrightarrow$R'을 ring homomorphism, P를 R의 한 Prime ideal, $R_{p}$, R'$_{p}$를 각각 S=R-P 및 f(S)에 관한 분수환(ring of fraction)이라 하고, k(P)를 local ring $R_{p}$의 residue' field라 할 때, R'의 prime spectrum의 부분공간인 $f^{*-1}$(P)는 k(P)(equation omitted)$_{R}$R'의 prime spectrum과 위상동형이다. 단 f*는 f*(Q)=$f^{-1}$(Q)로서 정의되는 함수 s*:Spec(R')$\longrightarrow$Spec(R)이다. 3. X를 환 S의 prime spectrum, N을 R의 nilradical이라 할 때, 다음 네가지 사실은 동치이다. (1) R/N 은 regular 이다. (2) X는 Zarski topology에 관하여 Hausdorff 공간이다. (3) X에서의 Zarski topology와 constructible topology와는 일치한다. (4) R의 임의의 원소 f에 대하여 f를 포함하지 않는 R의 prime ideal 전체의 집합 $X_{f}$는 Zarski topology에 관하여 개집합인 동시에 폐집합이다.폐집합이다....
For a subset $E{\subseteq}\mathbb{R}^d$ and $x{\in}\mathbb{R}^d$, the local Hausdorff dimension function of E at x and the local packing dimension function of E at x are defined by $$dim_{H,loc}(x,E)=\lim_{r{\searrow}0}dim_H(E{\cap}B(x,r))$$, $$dim_{P,loc}(x,E)=\lim_{r{\searrow}0}dim_P(E{\cap}B(x,r))$$, where $dim_H$ and $dim_P$ denote the Hausdorff dimension and the packing dimension, respectively. In this note we give a short and simple proof showing that for any pair of continuous functions $f,g:\mathbb{R}^d{\rightarrow}[0,d]$ with $f{\leq}g$, it is possible to choose a set E that simultaneously has f as its local Hausdorff dimension function and g as its local packing dimension function.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.