• Title/Summary/Keyword: Weyl tensor

Search Result 36, Processing Time 0.02 seconds

Conformally invariant tensors on hermitian manifolds

  • Matsuo, Koji
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.455-463
    • /
    • 1996
  • In [3] and [4], Kitahara, Pak and the author obtained the conformally invariant tensor $B_0$, which is an algebraic Hermitian analogue of the Weyl conformal curvature tensor W in the Riemannian geometry, by the decomposition of the curvature tensor H of the Hermitian connection and the notion of semi-curvature-like tensors of Tanno (see[7]). In [5], the author defined a conformally invariant tensor $B_0$ on a Hermitian manifold as a modification of $B_0$. Moreover he introduced the notion of local conformal Hermitian-flatness of Hermitian manifolds and proved that the vanishing of this tensor $B_0$ together with some condition for the scalar curvatures is a necessary and sufficient condition for a Hermitian manifold to be locally conformally Hermitian-flat.

  • PDF

QUASI SIMILARITY AND INJECTIVE p-QUASIHYPONORMAL OPERATORS

  • Woo, Young-Jin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.3
    • /
    • pp.653-659
    • /
    • 2005
  • In this paper it is proved that quasisimilar n-tuples of tensor products of injective p-quasihyponormal operators have the same spectra, essential spectra and indices, respectively. And it is also proved that a Weyl n-tuple of tensor products of injective p-quasihyponormal operators can be perturbed by an n-tuple of compact operators to an invertible n-tuple.

SELF-DUAL EINSTEIN MANIFOLDS OF POSITIVE SECTIONAL CURVATURE

  • Ko, Kwanseok
    • Korean Journal of Mathematics
    • /
    • v.13 no.1
    • /
    • pp.51-59
    • /
    • 2005
  • Let (M, $g$) be a compact oriented self-dual 4-dimensional Einstein manifold with positive sectional curvature. Then we show that, up to rescaling and isometry, (M, $g$) is $S^4$ or $\mathbb{C}\mathbb{P}_2$, with their cannonical metrics.

  • PDF

CONFORMALLY RECURRENT SPACE-TIMES ADMITTING A PROPER CONFORMAL VECTOR FIELD

  • De, Uday Chand;Mantica, Carlo Alberto
    • Communications of the Korean Mathematical Society
    • /
    • v.29 no.2
    • /
    • pp.319-329
    • /
    • 2014
  • In this paper we study the properties of conformally recurrent pseudo Riemannian manifolds admitting a proper conformal vector field with respect to the scalar field ${\sigma}$, focusing particularly on the 4-dimensional Lorentzian case. Some general properties already proven by one of the present authors for pseudo conformally symmetric manifolds endowed with a conformal vector field are proven also in the case, and some new others are stated. Moreover interesting results are pointed out; for example, it is proven that the Ricci tensor under certain conditions is Weyl compatible: this notion was recently introduced and investigated by one of the present authors. Further we study conformally recurrent 4-dimensional Lorentzian manifolds (space-times) admitting a conformal vector field: it is proven that the covector ${\sigma}_j$ is null and unique up to scaling; moreover it is shown that the same vector is an eigenvector of the Ricci tensor. Finally, it is stated that such space-time is of Petrov type N with respect to ${\sigma}_j$.

HIGHEST WEIGHT VECTORS OF IRREDUCIBLE REPRESENTATIONS OF THE QUANTUM SUPERALGEBRA μq(gl(m, n))

  • Moon, Dong-Ho
    • Journal of the Korean Mathematical Society
    • /
    • v.40 no.1
    • /
    • pp.1-28
    • /
    • 2003
  • The Iwahori-Hecke algebra $H_{k}$ ( $q^2$) of type A acts on the k-fold tensor product space of the natural representation of the quantum superalgebra (equation omitted)$_{q}$(gl(m, n)). We show the Hecke algebra $H_{k}$ ( $q^2$) and the quantum superalgebra (equation omitted)$_{q}$(gl(m n)) have commuting actions on the tensor product space, and determine the centralizer of each other. Using this result together with Gyoja's q-analogue of the Young symmetrizers, we construct highest weight vectors of irreducible summands of the tensor product space.

ON OPERATORS WITH AN ABSOLUTE VALUE CONDITION

  • Jeon, In-Ho;DUGGAL, B.P.
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.4
    • /
    • pp.617-627
    • /
    • 2004
  • Let (equation omitted) denote the class of bounded linear Hilbert space operators with the property that $\midA^2\mid\geq\midA\mid^2$. In this paper we show that (equation omitted)-operators are finitely ascensive and that, for non-zero operators A and B, A (equation omitted) B is in (equation omitted) if and only if A and B are in (equation omitted). Also, it is shown that if A is an operator such that p(A) is in (equation omitted) for a non-trivial polynomial p, then Weyl's theorem holds for f(A), where f is a function analytic on an open neighborhood of the spectrum of A.

ON WEAKLY CYCLIC GENERALIZED B-SYMMETRIC MANIFOLDS

  • Mohabbat Ali;Aziz Ullah Khan;Quddus Khan;Mohd Vasiulla
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.4
    • /
    • pp.1271-1280
    • /
    • 2023
  • The object of the present paper is to introduce a type of non-flat Riemannian manifold, called a weakly cyclic generalized B-symmetric manifold (W CGBS)n. We obtain a sufficient condition for a weakly cyclic generalized B-symmetric manifold to be a generalized quasi Einstein manifold. Next we consider conformally flat weakly cyclic generalized B-symmetric manifolds. Then we study Einstein (W CGBS)n (n > 2). Finally, it is shown that the semi-symmetry and Weyl semi-symmetry are equivalent in such a manifold.

ON A CLASS OF N(κ)-QUASI EINSTEIN MANIFOLDS

  • De, Avik;De, Uday Chand;Gazi, Abul Kalam
    • Communications of the Korean Mathematical Society
    • /
    • v.26 no.4
    • /
    • pp.623-634
    • /
    • 2011
  • The object of the present paper is to study N(${\kappa}$)-quasi Einstein manifolds. Existence of N(${\kappa}$)-quasi Einstein manifolds are proved. Physical example of N(${\kappa}$)-quasi Einstein manifold is also given. Finally, Weyl-semisymmetric N(${\kappa}$)-quasi Einstein manifolds have been considered.