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SELF-DUAL EINSTEIN MANIFOLDS OF POSITIVE

SECTIONAL CURVATURE

Kwanseok Ko

Abstract. Let (M, g) be a compact oriented self-dual 4-
dimensional Einstein manifold with positive sectional curvature.
Then we show that, up to rescaling and isometry, (M, g) is S4 or
CP2, with their cannonical metrics.

1. Introduction and preliminaries

Let (M, g) be an oriented Riemannaian 4-manifold , and let Λ2 denote
the bundles of exterior 2-forms on M . We have an invariant decomposi-
tion

(1) Λ2 = Λ+ ⊕ Λ−

as the sum of two vector bundles. Here Λ± are the eigenspaces of the
Hodge star operator

? : Λ2 → Λ2,

corresponding respectively to the eigenvalue ±1. Sections of Λ+ are
called self-dual 2-forms, whereas sections of Λ− are called anti-self-dual
2-forms. But since the curvature tensor of g may be thought of as a
symmetric map R : Λ2 → Λ2 given by

(2) R(eij) =
1

2

∑
k,l

Rijlkekl,

where {ei} is a local orthonormal basis of 1-forms , eij denotes the 2-
form ei ∧ ej and Rijlk =< R(ei, ej)el, ek >. Equation (1) gives us a
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decomposition [1, 9] of the curvature into irreducible components

(3) R =


W+ + s

12
Z

Z W− + s
12

 ,

where the self-dual and anti-self-dual Weyl curvatures W± of Wely cur-
vature W = W+ + W− are trace-free as endomorphisms of Λ±. The
scalar curvature s is understood here to act by scalar multiplication. On
the other hand, Z represents the trace-free Ricci curvature Ric− s

4
g.

Let A = W+ + s
12

and let C = W− + s
12

. They are trA = trC = s
4
.

Then the two components of the Weyl tensor W+ and W− are given by
W+ = A− s

12
and W− = C − s

12
.

Riemannian 4-manifold (M, g) is said to be Einstein if it has constant
Ricci curvature — i.e. if its Ricci tensor Ric is a constant multiple of
the metric:

(4) Ric =
s

4
g.

And so Z = Ric− s
4
g vanishes iff g is Einstein.

An oriented manifold is self-dual if W− = 0.

The simplest examples of compact Einstein manifolds with positive
Ricci curvature (λ > 0) are provided by the irreducible symmetric spaces
of compact type. In dimension 4, this observation yields exactly two
orientable examples: S4 = SO(5)/SO(4) and CP2 = SU(3)/U(2), both
of which actually have positive sectional curvature. The Fubini-Study
metric is the unique U(2)-invariant metric on CP2 = SU(3)/U(2)
with total volume π2/2; it is Einstein, and has sectional curvatures
K(P ) ∈ [1, 4]. By homothetically isometric, we mean isometric after
rescaling; in other words, the theorem concludes by asserting the
existence of a diffeomorphism Φ : M → CP2 such that g = Φ∗cg0 for
some positive constant c.

In this paper, we prove the following.
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Theorem A. Let M be a smooth compact oriented 4-manifold , and
suppose that g is a self-dual Einstein metric on M which has positive
sectional curvature. Then (M, g) is homothetically isometric to S4 or to
CP2, equipped with its standard metric.

Let F : Λ2(TxM) → Λ2(TxM) be the Weitzenböck operator given by

< F (eij), ekl > = Ric(ei, ek)δjk + Ric(ej, el)δik

− Ric(ei, el)δjk −Ric((ej, ek)δil − 2Rijlk.

This operator satisfies the magic Weitzenböck formula, that is,

(5) ∆ω = −div∇ω + F (ω),

where ∇ is the covariant differential operator of the Levi-Civita
connection of g. Moreover, F is a symmetric operator and Λ+ and
Λ− are F -invariant. Then ?F = F?, at each point of M we have a
decomposition F = F+ + F− with respect to the decomposition (1) and
a normal form ,as in [9] for the curvature tensor R.

Let (M, g) be an oriented Einstein 4-manifold. Then , for each x ∈ M ,
there exists a positively oriented orthonormal basis {e1, e2, e3, e4} of TxM
such that, relative to the corresponding basis {e12, e34, e13, e42, e14, e23}
of Λ2

x(M).
Let {α1, α2, α3} and {β1, β2, β3} be orthonormal bases of eigenvec-

tors of F+ and F− respectively , and f+
i and f−i , i = 1, 2, 3 are the

corresponding eigenvalues. It follows easily from the lemma?? that the
self-dual -2 forms

α1 =

√
2

2
(e12 + e34), α2 =

√
2

2
(e13 − e24), α3 =

√
2

2
(e14 + e24)

are the eigenvectors of the symmetric operator F+ with corresponding
eigenvalues f+

i and that the anti-self-dual -2 forms

β1 =

√
2

2
(e12 − e34), β2 =

√
2

2
(e13 + e24), β3 =

√
2

2
(e14 − e24)

are the eigenvectors of the symmetric operator F− with corresponding
eigenvalues f− . Kij denote the sectional curvature of the plane {ei, ej}.

Since M is an Einstein 4-manifold, we have K12 = K34, K13 =
K24, K14 = K23 from [9] .
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From the definition of F , we have

f+
1 = < F (α1), α1 >

=
1

2
(Ric(e1) + Ric(e2) + Ric(e3) + Ric(e4)− 2K12 − 2K34 + 4R1234)

= K13 + K24 + K14 + K23 + 2R1234

= 2(K13 + K14 + R1234).

Similarly, we obtains

f+
2 = 2(K12 + K14 −R1324)

f+
3 = 2(K12 + K13 + R1423)

f−1 = 2(K13 + K14 −R1234)

f−2 = 2(K12 + K14 + R1324)

f−3 = 2(K12 + K13 −R1423).

We can therefore state the well-known result as follows.

Proposition 1. [8]

The Weitzenböck operator is given in terms of the scalar curvature

F+ =
s

3
− 2W+

F− =
s

3
− 2W−.

Lemma 1. Let (M, g) be an oriented Einstein 4-manifold with W− =
0.

Then the norm and determinant of self-dual Weyl curvature tensor
satisfies

|W+|2 = s2

6
− 8(K12K13 + K12K14 + K13K14),(6)

18det W+ = s3

6
− 12s(K12K13 + K12K14 + K13K14) + 144K12K13K14.(7)

Proof. By the above Proposition, we have
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w+
1 = − s

12
+ K12 + R1234

w+
2 = − s

12
+ K13 −R1324

w+
3 = − s

12
+ K14 + R1423

w−
1 = − s

12
+ K12 −R1234

w−
2 = − s

12
+ K13 + R1324

w−
3 = − s

12
+ K14 −R1423.

Since W− = 0, we obtain

w+
1 = 2(− s

12
+ K12)

w+
2 = 2(− s

12
+ K13)

w+
3 = 2(− s

12
+ K14).

Therefore ,we get

|W |2 = (w+
1 )2 + (w+

2 )2 + (w+
3 )2

= 4(− s
12

+ K12)
2 + 4(− s

12
+ K13)

2 + 4(− s
12

+ K14)
2

= s2

6
− 8(K12K13 + K12K14 + K13K14).

Also, we obtain

18 det W+ = 18w+
1 w+

2 w+
3

= 144(− s
12

+ K12)(− s
12

+ K13)(− s
12

+ K14)

= s3

6
− 12s(K12K13 + K12K14 + K13K14) + 144K12K13K14.
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2. The Curvature of 4-Manifolds

The curvatures W+, and s correspond to different irreducible repre-
sentation of SO(4), so the only invariant quadratic polynomials in the
curvature of an oriented self-dual Einstein 4-manifold are linear combi-
nations of s2 and |W+|2. This observation can be applied, in particular,
to simplify the integrands [1, 7, 10] of the 4-dimensional Chern-Gauss-
Bonnet

(8) χ(M) =
1

8π2

∫
M

[
|W+|2 +

s2

24

]
dµ

and Hirzebruch signature

(9) τ(M) =
1

12π2

∫
M

|W+|2dµ

formulæ. Here the curvatures, norms | · |, and volume form dµ are, of
course, those of any given Einstein metric g on M .

By a simple calculation, we have

(10) χ(M)− 3

2
τ(M) =

1

8π2

∫
M

s2
g

24
dµg > 0.

By our condition , b+ > 0 and b− = 0, so χ(M) = 2 + b+ and
τ(M) = b+ > 0. Hence

χ(M)− 3

2
τ(M) = 2− 1

2
b+ > 0.

We get

b+(M) < 4.

Therefore here are three cases τ(M) = 0, τ(M) = 1, τ(M) = 2
and τ(M) = 3,the corresponding Euler characteristic are
χ(M) = 2, χ(M) = 3, χ(M) = 4 and χ(M) = 5

In case τ(M) = 3, χ(M) = 5, we have

3χ(M) = 5τ(M).

This means that

4

8π2

∫
M

[
|W+|2 +

s2

24

]
dµ =

5

12π2

∫
M

|W+|2dµ.
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Thus ,we obtain ∫
M

|W+|2dµ =
3

8π2
,

which is an obvious contradiction to the inequality[8]

From the result of [5], the case χ(M) = 4, τ(M) = 2 cannot occur.
For the case χ(M) = 2, τ(M) = 0. it is well-known that this manifold is
isometric to the standard 4-sphere S4.

We discuss the remaining case χ(M) = 3, τ(M) = 1 .From the above
integral relationship between characteristic numbers, we have∫

M

|W+|2dµ =
1

24π2
.

This is equivalent to the identity

(11)

∫
M

K2
12 + K2

13 + K2
14dµ

∫
M

2(K12K13 + K12K14 + K13K14)dµ.

There are many proofs in this case,but we give a very simple proof.
The key observations of §2 were basically point-wise in character.

We now turn to some results of a fundamentally global nature.

On the other hand, Derdziński [2, 3, 6] observed the Weitzenböck
formula

(12) 0 =
1

2
∆|W+|2 + |∇W+|2 +

s

2
|W+|2 − 18 det W+

where ∆ is again the positive Laplacian and det W+ is the determinant
of the bundle endomorphism W+ : Λ+ → Λ+.

Integrating the above Weitzenböck formula and using the
equation(11) and ( 1), we have

0 =
∫

M

[
|∇W+|2 + s

2
|W+|2 − 18 det W+

]
dµ

We estimate the part of the above integral and use the equation(11)
and (1), we have
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∫
M
− s3

6
+ 8s(K12K13 + K12K14 + K13K14)

−144K12K13K14dµ

=
∫

M
16
3

[4(K12K13 + K12K14 + K13K14)−K2
12 −K2

13 −K2
14]

×(K12 + K13 + K14)− 144K12K13K14dµ

=
∫

M
32
3
(K12K13 + K12K14 + K13K14)(K12 + K13 + K14)

−144K12K13K14dµ

=
∫

M
32
3
(K12K13 + K12K14 + K13K14)(K12 + K13 + K14)

−144K12K13K14dµ

=
∫

M
32
3
(K12K13 + K12K14 + K13K14)(K12 + K13 + K14)

−144K12K13K14dµ

=
∫

M
32
3
(K2

12 + K2
13)K14 + (K2

14 + K2
13)K12 + (K2

12 + K2
14)K13)

−112K12K13K14dµ

≥ 0.

Therefore we obtain ∇W+ ≡ 0 and |W+|2 = s2

24
. In this case, (M, g)

is homothetically isometric to CP2, equipped with its standard Fubini-
Study metric.

3. The Proof of Main Theorems

Let (M, g) be a smooth compact oriented self-dual Einstein 4-manifold
with positive sectional curvature. By the above discussion, there are two
cases. First case is χ(M) = 2, τ(M) = 0. This manifold is isometric to
the standard 4-sphere S4. The second case is χ(M) = 3, τ(M) = 1. Then
(M, g) is homothetically isometric to CP2, equipped with its standard
Fubini-Study metric[1, 4].
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