Kangweon-Kyungki Math. Jour. 13 (2005), No. 1, pp. 51-59

SELF-DUAL EINSTEIN MANIFOLDS OF POSITIVE SECTIONAL CURVATURE

KWANSEOK KO

ABSTRACT. Let (M,g) be a compact oriented self-dual 4dimensional Einstein manifold with positive sectional curvature. Then we show that, up to rescaling and isometry, (M,g) is S^4 or \mathbb{CP}_2 , with their cannonical metrics.

1. Introduction and preliminaries

Let (M, g) be an oriented Riemannaian 4-manifold, and let Λ^2 denote the bundles of exterior 2-forms on M. We have an invariant decomposition

(1)
$$\Lambda^2 = \Lambda^+ \oplus \Lambda^-$$

as the sum of two vector bundles. Here Λ^\pm are the eigenspaces of the Hodge star operator

$$\star: \Lambda^2 \to \Lambda^2,$$

corresponding respectively to the eigenvalue ± 1 . Sections of Λ^+ are called *self-dual* 2-forms, whereas sections of Λ^- are called *anti-self-dual* 2-forms. But since the curvature tensor of g may be thought of as a symmetric map $\mathcal{R} : \Lambda^2 \to \Lambda^2$ given by

(2)
$$\mathcal{R}(e_{ij}) = \frac{1}{2} \sum_{k,l} R_{ijlk} e_{kl},$$

where $\{e_i\}$ is a local orthonormal basis of 1-forms, e_{ij} denotes the 2-form $e_i \wedge e_j$ and $R_{ijlk} = \langle R(e_i, e_j)e_l, e_k \rangle$. Equation (1) gives us a

Received December 21, 2004.

²⁰⁰⁰ Mathematics Subject Classification: 53C21.

Key words and phrases: Einstein, 4-Manifold, Sectional Curvature, Weyl Tensor, Self-dual.

decomposition [1, 9] of the curvature into irreducible components

(3)
$$\mathcal{R} = \left(\begin{array}{c|c} W^+ + \frac{s}{12} & Z \\ \hline \\ \hline \\ Z & W^- + \frac{s}{12} \end{array}\right)$$

where the *self-dual* and *anti-self-dual Weyl curvatures* W^{\pm} of Wely curvature $W = W^{+} + W^{-}$ are trace-free as endomorphisms of Λ^{\pm} . The scalar curvature s is understood here to act by scalar multiplication. On the other hand, Z represents the trace-free Ricci curvature $Ric - \frac{s}{4}g$.

Let $A = W^+ + \frac{s}{12}$ and let $C = W^- + \frac{s}{12}$. They are $trA = trC = \frac{s}{4}$. Then the two components of the Weyl tensor W^+ and W^- are given by $W^+ = A - \frac{s}{12}$ and $W^- = C - \frac{s}{12}$.

Riemannian 4-manifold (M, g) is said to be *Einstein* if it has constant Ricci curvature — i.e. if its Ricci tensor *Ric* is a constant multiple of the metric:

(4)
$$Ric = \frac{s}{4}g.$$

And so $Z = Ric - \frac{s}{4}g$ vanishes iff g is Einstein. An oriented manifold is *self-dual* if $W^- = 0$.

The simplest examples of compact Einstein manifolds with positive Ricci curvature $(\lambda > 0)$ are provided by the irreducible symmetric spaces of compact type. In dimension 4, this observation yields exactly two orientable examples: $S^4 = SO(5)/SO(4)$ and $\mathbb{CP}_2 = SU(3)/U(2)$, both of which actually have positive sectional curvature. The Fubini-Study metric is the unique U(2)-invariant metric on $\mathbb{CP}_2 = SU(3)/U(2)$ with total volume $\pi^2/2$; it is Einstein, and has sectional curvatures $K(P) \in [1,4]$. By homothetically isometric, we mean isometric after rescaling; in other words, the theorem concludes by asserting the existence of a diffeomorphism $\Phi : M \to \mathbb{CP}_2$ such that $g = \Phi^* cg_0$ for some positive constant c.

In this paper, we prove the following.

THEOREM A. Let M be a smooth compact oriented 4-manifold, and suppose that g is a self-dual Einstein metric on M which has positive sectional curvature. Then (M, g) is homothetically isometric to S^4 or to \mathbb{CP}_2 , equipped with its standard metric.

Let $F: \Lambda^2(T_xM) \to \Lambda^2(T_xM)$ be the Weitzenböck operator given by

$$< F(e_{ij}), e_{kl} > = Ric(e_i, e_k)\delta_{jk} + Ric(e_j, e_l)\delta_{ik} - Ric(e_i, e_l)\delta_{jk} - Ric((e_j, e_k)\delta_{il} - 2R_{ijlk}.$$

This operator satisfies the magic Weitzenböck formula, that is,

(5)
$$\Delta \omega = -div\nabla \omega + F(\omega),$$

where ∇ is the covariant differential operator of the Levi-Civita connection of g. Moreover, F is a symmetric operator and Λ^+ and Λ^- are F-invariant. Then $\star F = F \star$, at each point of M we have a decomposition $F = F^+ + F^-$ with respect to the decomposition (1) and a normal form ,as in [9] for the curvature tensor R.

Let (M, g) be an oriented Einstein 4-manifold. Then, for each $x \in M$, there exists a positively oriented orthonormal basis $\{e_1, e_2, e_3, e_4\}$ of T_xM such that, relative to the corresponding basis $\{e_{12}, e_{34}, e_{13}, e_{42}, e_{14}, e_{23}\}$ of $\Lambda_x^2(M)$.

Let $\{\alpha_1, \alpha_2, \alpha_3\}$ and $\{\beta_1, \beta_2, \beta_3\}$ be orthonormal bases of eigenvectors of F^+ and F^- respectively, and f_i^+ and f_i^- , i = 1, 2, 3 are the corresponding eigenvalues. It follows easily from the lemma?? that the self-dual -2 forms

$$\alpha_1 = \frac{\sqrt{2}}{2}(e_{12} + e_{34}), \alpha_2 = \frac{\sqrt{2}}{2}(e_{13} - e_{24}), \alpha_3 = \frac{\sqrt{2}}{2}(e_{14} + e_{24})$$

are the eigenvectors of the symmetric operator F^+ with corresponding eigenvalues f_i^+ and that the anti-self-dual -2 forms

$$\beta_1 = \frac{\sqrt{2}}{2}(e_{12} - e_{34}), \beta_2 = \frac{\sqrt{2}}{2}(e_{13} + e_{24}), \beta_3 = \frac{\sqrt{2}}{2}(e_{14} - e_{24})$$

are the eigenvectors of the symmetric operator F^- with corresponding eigenvalues f^- . K_{ij} denote the sectional curvature of the plane $\{e_i, e_j\}$.

Since M is an Einstein 4-manifold, we have $K_{12} = K_{34}, K_{13} = K_{24}, K_{14} = K_{23}$ from [9].

From the definition of ${\cal F}$, we have

$$\begin{split} f_1^+ &= \langle F(\alpha_1), \alpha_1 \rangle \\ &= \frac{1}{2} (Ric(e_1) + Ric(e_2) + Ric(e_3) + Ric(e_4) - 2K_{12} - 2K_{34} + 4R_{1234}) \\ &= K_{13} + K_{24} + K_{14} + K_{23} + 2R_{1234} \\ &= 2(K_{13} + K_{14} + R_{1234}). \end{split}$$

Similarly, we obtains

$$f_2^+ = 2(K_{12} + K_{14} - R_{1324})$$

$$f_3^+ = 2(K_{12} + K_{13} + R_{1423})$$

$$f_1^- = 2(K_{13} + K_{14} - R_{1234})$$

$$f_2^- = 2(K_{12} + K_{14} + R_{1324})$$

$$f_3^- = 2(K_{12} + K_{13} - R_{1423}).$$

We can therefore state the well-known result as follows.

PROPOSITION 1. [8]

The Weitzenböck operator is given in terms of the scalar curvature

$$F^{+} = \frac{s}{3} - 2W^{+}$$
$$F^{-} = \frac{s}{3} - 2W^{-}.$$

LEMMA 1. Let (M, g) be an oriented Einstein 4-manifold with $W^- = 0$.

Then the norm and determinant of self-dual Weyl curvature tensor satisfies

(6)
$$|W_{+}|^{2} = \frac{s^{2}}{6} - 8(K_{12}K_{13} + K_{12}K_{14} + K_{13}K_{14}),$$

(8) let $W_{+} = \frac{s^{3}}{6} - 12s(K_{12}K_{13} + K_{12}K_{14} + K_{13}K_{14}) + 144K_{12}K_{13}K_{14},$

Proof. By the above Proposition, we have

$$w_1^+ = -\frac{s}{12} + K_{12} + R_{1234}$$
$$w_2^+ = -\frac{s}{12} + K_{13} - R_{1324}$$
$$w_3^+ = -\frac{s}{12} + K_{14} + R_{1423}$$
$$w_1^- = -\frac{s}{12} + K_{12} - R_{1234}$$
$$w_2^- = -\frac{s}{12} + K_{13} + R_{1324}$$
$$w_3^- = -\frac{s}{12} + K_{14} - R_{1423}.$$

Since $W^- = 0$, we obtain

$$w_1^+ = 2\left(-\frac{s}{12} + K_{12}\right)$$
$$w_2^+ = 2\left(-\frac{s}{12} + K_{13}\right)$$
$$w_3^+ = 2\left(-\frac{s}{12} + K_{14}\right).$$

Therefore , we get

$$|W|^{2} = (w_{1}^{+})^{2} + (w_{2}^{+})^{2} + (w_{3}^{+})^{2}$$

= $4(-\frac{s}{12} + K_{12})^{2} + 4(-\frac{s}{12} + K_{13})^{2} + 4(-\frac{s}{12} + K_{14})^{2}$
= $\frac{s^{2}}{6} - 8(K_{12}K_{13} + K_{12}K_{14} + K_{13}K_{14}).$

Also, we obtain

$$18 \det W_{+} = 18w_{1}^{+}w_{2}^{+}w_{3}^{+}$$
$$= 144(-\frac{s}{12} + K_{12})(-\frac{s}{12} + K_{13})(-\frac{s}{12} + K_{14})$$
$$= \frac{s^{3}}{6} - 12s(K_{12}K_{13} + K_{12}K_{14} + K_{13}K_{14}) + 144K_{12}K_{13}K_{14}.$$

55

2. The Curvature of 4-Manifolds

The curvatures W^+ , and s correspond to different irreducible representation of SO(4), so the only invariant quadratic polynomials in the curvature of an oriented self-dual Einstein 4-manifold are linear combinations of s^2 and $|W_+|^2$. This observation can be applied, in particular, to simplify the integrands [1, 7, 10] of the 4-dimensional Chern-Gauss-Bonnet

(8)
$$\chi(M) = \frac{1}{8\pi^2} \int_M \left[|W_+|^2 + \frac{s^2}{24} \right] d\mu$$

and Hirzebruch signature

(9)
$$\tau(M) = \frac{1}{12\pi^2} \int_M |W_+|^2 d\mu$$

formulæ. Here the curvatures, norms $|\cdot|$, and volume form $d\mu$ are, of course, those of any given Einstein metric g on M.

By a simple calculation, we have

(10)
$$\chi(M) - \frac{3}{2}\tau(M) = \frac{1}{8\pi^2} \int_M \frac{s_g^2}{24} d\mu_g > 0.$$

By our condition , $b_+ > 0$ and $b_- = 0$, so $\chi(M) = 2 + b_+$ and $\tau(M) = b_+ > 0$. Hence

$$\chi(M) - \frac{3}{2}\tau(M) = 2 - \frac{1}{2}b_+ > 0.$$

We get

$$b_+(M) < 4.$$

Therefore here are three cases $\tau(M) = 0, \tau(M) = 1, \tau(M) = 2$ and $\tau(M) = 3$, the corresponding Euler characteristic are $\chi(M) = 2, \chi(M) = 3, \chi(M) = 4$ and $\chi(M) = 5$

In case $\tau(M) = 3, \chi(M) = 5$, we have

$$3\chi(M) = 5\tau(M).$$

This means that

$$\frac{4}{8\pi^2} \int_M \left[|W_+|^2 + \frac{s^2}{24} \right] d\mu = \frac{5}{12\pi^2} \int_M |W_+|^2 d\mu.$$

Thus , we obtain

$$\int_M |W_+|^2 d\mu = \frac{3}{8\pi^2},$$

which is an obvious contradiction to the inequality [8]

From the result of [5], the case $\chi(M) = 4, \tau(M) = 2$ cannot occur. For the case $\chi(M) = 2, \tau(M) = 0$ it is well-known that this manifold is isometric to the standard 4-sphere S^4 .

We discuss the remaining case $\chi(M) = 3, \tau(M) = 1$. From the above integral relationship between characteristic numbers, we have

$$\int_M |W_+|^2 d\mu = \frac{1}{24\pi^2}.$$

This is equivalent to the identity

(11)
$$\int_{M} K_{12}^{2} + K_{13}^{2} + K_{14}^{2} d\mu \int_{M} 2(K_{12}K_{13} + K_{12}K_{14} + K_{13}K_{14})d\mu.$$

There are many proofs in this case, but we give a very simple proof.

The key observations of $\S2$ were basically point-wise in character. We now turn to some results of a fundamentally global nature.

On the other hand, Derdziński $\left[2,\;3,\;6\right]$ observed the Weitzenböck formula

(12)
$$0 = \frac{1}{2}\Delta|W^+|^2 + |\nabla W^+|^2 + \frac{s}{2}|W^+|^2 - 18\det W^+$$

where Δ is again the positive Laplacian and det W^+ is the determinant of the bundle endomorphism $W^+ : \Lambda^+ \to \Lambda^+$.

Integrating the above Weitzenböck formula and using the equation (11) and (1), we have

$$0 \ = \int_M \left[|\nabla W^+|^2 + \frac{s}{2} |W^+|^2 - 18 \det W^+ \right] d\mu$$

We estimate the part of the above integral and use the equation(11) and (1), we have

$$\begin{split} \int_{M} -\frac{s^{3}}{6} + 8s(K_{12}K_{13} + K_{12}K_{14} + K_{13}K_{14}) \\ -144K_{12}K_{13}K_{14}d\mu \\ = \int_{M} \frac{16}{3} \left[4(K_{12}K_{13} + K_{12}K_{14} + K_{13}K_{14}) - K_{12}^{2} - K_{13}^{2} - K_{14}^{2} \right] \\ \times (K_{12} + K_{13} + K_{12}) - 144K_{12}K_{13}K_{14}d\mu \\ = \int_{M} \frac{32}{3}(K_{12}K_{13} + K_{12}K_{14} + K_{13}K_{14})(K_{12} + K_{13} + K_{14}) \\ -144K_{12}K_{13}K_{14}d\mu \\ = \int_{M} \frac{32}{3}(K_{12}K_{13} + K_{12}K_{14} + K_{13}K_{14})(K_{12} + K_{13} + K_{14}) \\ -144K_{12}K_{13}K_{14}d\mu \\ = \int_{M} \frac{32}{3}(K_{12}K_{13} + K_{12}K_{14} + K_{13}K_{14})(K_{12} + K_{13} + K_{14}) \\ -144K_{12}K_{13}K_{14}d\mu \\ = \int_{M} \frac{32}{3}(K_{12}^{2} + K_{13}^{2})K_{14} + (K_{14}^{2} + K_{13}^{2})K_{12} + (K_{12}^{2} + K_{14}^{2})K_{13}) \\ -112K_{12}K_{13}K_{14}d\mu \\ \geq 0. \end{split}$$

Therefore we obtain $\nabla W^+ \equiv 0$ and $|W_+|^2 = \frac{s^2}{24}$. In this case, (M, g) is homothetically isometric to \mathbb{CP}_2 , equipped with its standard Fubini-Study metric.

3. The Proof of Main Theorems

Let (M, g) be a smooth compact oriented self-dual Einstein 4-manifold with positive sectional curvature. By the above discussion, there are two cases. First case is $\chi(M) = 2, \tau(M) = 0$. This manifold is isometric to the standard 4-sphere S^4 . The second case is $\chi(M) = 3, \tau(M) = 1$. Then (M, g) is homothetically isometric to \mathbb{CP}_2 , equipped with its standard Fubini-Study metric [1, 4].

References

- [1] A. Besse, **Einstein Manifolds**, Springer-Verlag, 1987.
- [2] J.P. Bourgignon, Les Variétés de Dimension 4 à Signature Non Nulle dont la Courbure Est Harmonique Sont d'Einstein, Inv. Math. 63 (1981) 263–286.
- [3] A. Derdziński, Self-dual Kähler Manifolds and Einstein Manifolds of Dimension Four, Comp. Math. 49 (1983) 405–433.

- [4] M. Freedman, On the Topology of 4-Manifolds, J. Diff. Geom. 17 (1982) 357– 454.
- [5] T. Friedrich and H. Kurke, Compact Four-Dimensional Self-Dual Einstein Manifolds with Positive Scalar Curvature, Math. Nachr. 106 (1982) 271–299.
- [6] M. Gursky, Four-Manifolds with $\delta W^+ = 0$ and Einstein Constants on the Sphere, preprint, 1997.
- [7] N.J. Hitchin, On Compact Four-Dimensional Einstein Manifolds, J. Diff. Geom. 9 (1974) 435–442.
- [8] M. H. Noronha, Positively curved 4-manifolds and the nonnegativity of isotropic curvature, Michigan math. J. 44(1997) 211- 229
- [9] I. M. Singer and J. A. Thorpe, The Curvature of 4-dimensional Einstein Spaces, Global Analysis (Papers in Honor of K. Kodaira), pp. 355–365, Univ. Tokyo Press, Tokyo, 1969.
- [10] J.A. Thorpe, Some Remarks on the Gauss-Bonnet Formula, J. Math. Mech. 18 (1969) 779–786.

Department of Mathematics Inha University Incheon, 402-751, Korea *E-mail*: ksko@math.inha.ac.kr