• Title/Summary/Keyword: Wet-Etching

Search Result 468, Processing Time 0.026 seconds

Optical Property and Surface Morphology Control by Randomly Patterned Etching (불규칙 패턴 에칭에 의한 표면 형상 제어와 광학적 특성)

  • Kim, Sung Soo;Lee, Jeong Woo;Jeon, Bup Ju
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.12
    • /
    • pp.800-805
    • /
    • 2017
  • Randomly patterned and wet chemical etching processes were used to treat anti-glare of display cover glasses. The surface and optical properties of grain size and surface morphology controlled by randomly patterned etching and wet chemical solution etching were investigated. The surface morphology and roughness of the etched samples were examined using a spectrophotometer and a portable surface roughness (Ra) measuring instrument, respectively. The gloss caused by reflection from the glass surface was measured at $60^{\circ}$ using a gloss meter. The surface of the sample etched by the doctor-blade process was more uniform than that obtained from a screen pattern etching process at gel state etching process of the first step. The surface roughness obtained from the randomly patterned etching process depended greatly on the mesh size, which in turn affected the grain size and pattern formation. The surface morphology and gloss obtained by the etching process in the second step depended primarily on the mesh size of the gel state etching process of the first step. In our experimental range, the gloss increased on decreasing the grain size at a lower mesh size for the first step process and for longer reaction times for the second step process.

Micromachining for plastic mold steel using DPSS UV laser and wet etching (DPSS UV Laser와 습식 식각을 이용한 금형강 미세 가공)

  • Min, Kyoung-Ik;Kim, Jae-Gu;Cho, Sung-Hak;Choi, Doo-Sun;Whang, Kyung-Hyun
    • Laser Solutions
    • /
    • v.12 no.3
    • /
    • pp.1-6
    • /
    • 2009
  • This paper describes the method for the fabrication of micro dot array on a plastic mold steel using DPSS (diode pumped solid-states) UV laser and wet etching process. We suggest the process of the ablation of a photoresist (PR) coated on plastic mold steel and wet etching process using solutions of various concentrations of $FeCl_3$, $HNO_3$ in water as etchant. This method makes it possible to fabricate metallic roller mold because the microstructures are directly fabricated on the metal surface. In the range of operating conditions studied, $17\;{\mu}J$ laser pulse energy and 50 ms laser exposure time, an etchant containing 40wt% $FeCl_3$, 5wt% $HNO_3$ and etch time for 45 s gave the $10\;{\mu}m$ of micro dot pattern on plastic mold steel.

  • PDF

A Novel KOH Wet Etching Technique for Ultrafine Nanostructure Formation (초정밀 나노구조물 형성을 위한 새로운 KOH 습식각 기술)

  • Kang, Chan-Min;Park, Jung-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.2
    • /
    • pp.156-161
    • /
    • 2011
  • The present study introduces a novel wet etching technique for nanostructure fabrications which usually requires low surface roughness. Using the current method, acquired profiles were smooth even in the nanoscale, which cannot be easily achieved with conventional wet or dry etching methods. As one of the most popular single crystal silicon etchant, potassium hydroxide (KOH) solution was used as a base solvent and two additives, antimony trioxide (Sb2O3) and ethyl alcohol were employed in. Four experimental parameters, concentrations of KOH, Sb2O3, and ethyl alcohol and temperature were optimized at 60 wt.%, 0.003 wt.%, 10 v/v%, and $23^{\circ}C$, respectively. Effects of additives in KOH solution were investigated on the profiles in both (110) and (111) planes of single crystal silicon wafer. The preliminary results show that additives play a critical role to decrease etch rate significantly down to ~2 nm/min resulting in smooth side wall profiles on (111) plane and enhanced surface roughness.

Manufacturing SiNx Extreme Ultraviolet Pellicle with HF Wet Etching Process (HF 습식 식각을 이용한 극자외선 노광 기술용 SiNx)

  • Kim, Ji Eun;Kim, Jung Hwan;Hong, Seongchul;Cho, HanKu;Ahn, Jinho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.3
    • /
    • pp.7-11
    • /
    • 2015
  • In order to protect the patterned mask from contamination during lithography process, pellicle has become a critical component for Extreme Ultraviolet (EUV) lithography technology. According to EUV pellicle requirements, the pellicle should have high EUV transmittance and robust mechanical property. In this study, silicon nitride, which is well-known for its remarkable mechanical property, was used as a pellicle membrane material to achieve high EUV transmittance. Since long silicon wet etching process time aggravates notching effect causing stress concentration on the edge or corner of etched structure, the remaining membrane is prone to fracture at the end of etch process. To overcome this notching effect and attain high transmittance, we began preparing a rather thick (200 nm) $SiN_x$ membrane which can be stably manufactured and was thinned into 43 nm thickness with HF wet etching process. The measured EUV transmittance shows similar values to the simulated result. Therefore, the result shows possibilities of HF thinning processes for $SiN_x$ EUV pellicle fabrication.

Manufacturing Large-scale SiNx EUV Pellicle with Water Bath (물중탕을 이용한 대면적 SiNx EUV 펠리클 제작)

  • Kim, Jung Hwan;Hong, Seongchul;Cho, Hanku;Ahn, Jinho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.1
    • /
    • pp.17-21
    • /
    • 2016
  • EUV (Extreme Ultraviolet) pellicle which protects a mask from contamination became a critical issue for the application of EUV lithography to high-volume manufacturing. However, researches of EUV pellicle are still delayed due to no typical manufacturing methods for large-scale EUV pellicle. In this study, EUV pellicle membrane manufacturing method using not only KOH (potassium hydroxide) wet etching process but also a water bath was suggested for uniform etchant temperature distribution. KOH wet etching rates according to KOH solution concentration and solution temperature were confirmed and proper etch condition was selected. After KOH wet etching condition was set, $5cm{\times}5cm$ SiNx (silicon nitride) pellicle membrane with 80% EUV transmittance was successfully manufactured. Transmittance results showed the feasibility of wet etching method with water bath as a large-scale EUV pellicle manufacturing method.

Study on Wet chemical Etching Characterization of Zinc Oxide Film for Transparency Conductive Oxide Application (투명 전도성 산화물 전극으로의 응용을 위한 산화아연(ZnO) 코팅막의 습식 식각 특성연구)

  • Yoo, Dong-Geun;Kim, Myoung-Hwa;Jeong, Seong-Hun;Boo, Jin-Hyo
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.1
    • /
    • pp.73-79
    • /
    • 2008
  • In order to apply for transparent conductive oxide(TCO), we deposited ZnO thin films on the glass at room temperature by RF magnetron sputtering method. Deposition conditions for high transmittance and low resistivity were optimized in our previous studies. Under the deposition condition with the RF power of 200 W, target to substrate distance of 30 mm and working pressure of 5 mTorr, highly conductive($7.4{\times}10^{-3}{\Omega}cm$) and transparent(over 85%) ZnO films were prepared. Highly oriented ZnO film in the [002] direction were obtained with specifically designed ZnO targets. Systematic study on dependence of deposition parameters on electrical and optical properties of the as-grown ZnO films were mainly investigated in this work. And for application tests using these films as transparent conductive oxide anodes, wet chemical etching behaviors of ZnO films were also investigated using various chemicals. Wet-chemical etching behavior of ZnO films were investigated using various acid solutions. The concentrations of these different acid solutions were controlled to study the etching shapes and etching rate. ZnO films were anisotropically etched at various concentrations and wet etching led to crater-like surface structure. Also we firstly found that the etching rate and etching shapes of ZnO films strongly depended on the etchant concentrations (i.e. pH) and the etching rate is exponentially decreased with increasing pH values regardless of the acid etchants.

Effects of Ingredients of Wet Etchant on Glass Slimming Process (유리기판 박막화를 위한 습식공정에서 식각액 성분의 영향)

  • Shin, Young Sik;Lee, Won Gyu
    • Korean Chemical Engineering Research
    • /
    • v.58 no.3
    • /
    • pp.474-479
    • /
    • 2020
  • The etching solution for slimming of glass substrates was manufactured and HF was used as the main ingredient of wet etching solutions. Various types of strong acids such as HCl, HNO3, H2SO4, amino acids and carboxylic acids such as citric acid, and etched solutions, respectively, were used to measure the etching rates and changes in surface shape of the glass. Regardless of the type of strong acids, the etching rate of the glass increased linearly as the added amount increased, and the sludge removal effect of the glass surface was also shown. The etching solution containing HCl showed more efficient results than other strong acids in the etching rate and the effect of removing sludge. The addition of carboxylic acid did not significantly affect the variation of etching rate, but had the effect of removing sludge. However, if amino acids were added, changes in etching rate and sludge removal were not significant.

Wet chemical etching of GaN (GaN의 습식 화학식각 특성)

  • 최용석;유순재;윤관기;이일형;이진구;임종수
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.2
    • /
    • pp.249-254
    • /
    • 1998
  • The etching experiments for n-GaN were done using the wet chemical, photo-enhanced-chemical and electro-chemical etching methods. The experimental results show that n-GaN is etched is diluted NaOH solution at room temperature and the removed thickness of n-GaN is linearly increased with etching times. The etching rate of the photo-enhanced-chemical and electro-chemical etching methods are several times higher than that of the wet chemical method. The maximum etching rate of n-GaN with $n{\fallingdotseq}1{\times}10^{19}cm^{-3}$ was 164 $\AA$/min under the experimental condition of the Photo-enhanced-chemical etching. The etching rates of n-GaN are very much dependant on the electron concentrations of the samples. The pattern is $100{\mu}m{\times}100{\mu}m$ rectangulars covered with $SiO_2$film. It is shown that the etched side-wall charactistics of the pattern is vertical without dependance of the n-GaN orientations, and the smoothness of etched n-GaN surface is fairly flat.

  • PDF

A Behavior of the Wet Etching of CoNbZr/Cu/CoNbZr Multi-Layer Films (CoNbZr/Cu/CoNbZr 다층막의 습식 식각 거동)

  • 김현식;이영생;송재성;오영두;윤재홍
    • Electrical & Electronic Materials
    • /
    • v.10 no.7
    • /
    • pp.645-650
    • /
    • 1997
  • We manufactured CoNbZr/Cu/CoNbZr multi-layer films by rf magnetron sputtering methods and formed the patterns on the deposited multi-layer films. In this study, we fabricated a new etchant for forming the patterns by the wet etching with etchant and we searched for the best etching conditions and the etchant composition. Cu was etched selectively independent on the concentration of iron chloride solution, but amorphous CoNbZr thin film did not. The etchant was achieved by iron chloride solution(17.5 mol%) mixed with HF (20 mol%) during 150 sec, which etched CoNbZr/Cu/CoNbZr multi-layer films at the same time. Also, the etchant etched CoNbZr/Cu/CoNbZr multi-layer films by the three-step. It was shown that the cross-section had the isotropic structure and excellent etching characteristics with the above etchant.

  • PDF

Fabricating a Micro-Lens Array Using a Laser-Induced 3D Nanopattern Followed by Wet Etching and CO2 Laser Polishing

  • Seung-Sik Ham;Chang-Hwam Kim;Soo-Ho Choi;Jong-Hoon Lee;Ho Lee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.4_1
    • /
    • pp.517-527
    • /
    • 2023
  • Many techniques have been proposed and investigated for microlens array manufacturing in three-dimensional (3D) structures. We present fabricating a microlens array using selective laser etching and a CO2 laser. The femtosecond laser was employed to produce multiple micro-cracks that comprise the predesigned 3D structure. Subsequently, the wet etching process with a KOH solution was used to produce the primary microlens array structures. To polish the nonoptical surface to the optical surface, we performed reflow postprocessing using a CO2 laser. We confirmed that the micro lens array can be manufactured in three primary shapes (cone, pyramid and hemisphere). Compared to our previous study, the processing time required for laser processing was reduced from approximately 1 hour to less than 30 seconds using the proposed processing method. Therefore, micro lens arrays can be manufactured using our processing method and can be applied to mass productionon large surface areas.