DOI QR코드

DOI QR Code

Fabricating a Micro-Lens Array Using a Laser-Induced 3D Nanopattern Followed by Wet Etching and CO2 Laser Polishing

  • Seung-Sik Ham (R&D center, JY engineering) ;
  • Chang-Hwam Kim (Division of Mechanical Engineering Technology, Yeungnam University college) ;
  • Soo-Ho Choi (Laser Application Center, Kyungpook National University) ;
  • Jong-Hoon Lee (Laser Application Center, Kyungpook National University) ;
  • Ho Lee (Laser Application Center, Kyungpook National University)
  • Received : 2023.06.14
  • Accepted : 2023.07.19
  • Published : 2023.08.31

Abstract

Many techniques have been proposed and investigated for microlens array manufacturing in three-dimensional (3D) structures. We present fabricating a microlens array using selective laser etching and a CO2 laser. The femtosecond laser was employed to produce multiple micro-cracks that comprise the predesigned 3D structure. Subsequently, the wet etching process with a KOH solution was used to produce the primary microlens array structures. To polish the nonoptical surface to the optical surface, we performed reflow postprocessing using a CO2 laser. We confirmed that the micro lens array can be manufactured in three primary shapes (cone, pyramid and hemisphere). Compared to our previous study, the processing time required for laser processing was reduced from approximately 1 hour to less than 30 seconds using the proposed processing method. Therefore, micro lens arrays can be manufactured using our processing method and can be applied to mass productionon large surface areas.

Keywords

Acknowledgement

This work was partially supported by Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government (MOTIE)(N0000598, P0017662) This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2022R1I1A3063 490). The authors acknowledge Display Nanomaterials Institute for providing measurement.

References

  1. Sales, T. R., Structured Microlens Arrays for Beam Shaping, Laser Beam Shaping IV, 5175, p.109~120, (2003). https://doi.org/10.1117/12.510321
  2. Jin, Y., Jiang, Y., Freeform microlens array homogenizer for excimer laser beam shaping, Optics Express, 24, 22, p.24846~24858, (2016). https://doi.org/10.1364/OE.24.024846
  3. Chen, E., Wu, R., Guo, T., Design a freeform microlens array module for any arbitrary-shape collimated beam shaping and color mixing, Optics Communications, 321, p.78~85, (2014). https://doi.org/10.1016/j.optcom.2014.01.032
  4. Harrold, J., Wilkes, D., Woodgate, G. J., Switchable 2D/3D display-solid phase liquid crystal microlens array. Proc. IDW, 11, p.1495~1496, (2004).
  5. Wang, Q., Deng, H., Jiao, T., Li, D., Wang, F., Imitating micro-lens array for integral imaging, Chinese Optics Letters, 8, 5, p.512~514, (2010). https://doi.org/10.3788/COL20100805.0512
  6. Wu, F., Wang, Q. H., Luo, C. G., Li, D. H., Deng, H., Dual-view integral imaging 3D display using polarizer parallax barriers, Applied Optics, 53, 10, p.2037~2039, (2014). https://doi.org/10.1364/AO.53.002037
  7. Leggatt, J. S., Hutley, M. C., Microlens arrays for interconnection of singlemode fibre arrays, Electronics letters, 3, 27, p.238~240, (1991). https://doi.org/10.1049/el:19910154
  8. Sohn, I. B., Lee, H., Jung, D., Noh, Y. C., Kim, C., Fabrication of a bi-directional firing multimode fiber using a high repetition rate femtosecond laser and a CO2 laser, L aser Physics Letters, 10, 10, p.106101, (2013).
  9. Kim, C., Sohn, I. B., Lee, Y. J., Byeon, C. C., Kim, S. Y., Park, H., Lee, H., Fabrication of a fused silica based mold for the microlenticular lens array using a femtosecond laser and a CO2 laser, Optical Materials Express, 4, 11, p.2233~2240, (2014). https://doi.org/10.1364/OME.4.002233
  10. Marcinkevicius, A., Juodkazis, S., Watanabe, M., Miwa, M., Matsuo, S., Misawa, H., Nishii, J., Femtosecond laser-assisted three-dimensional microfabrication in silica, Optics letters, 26, 5, p.277~279, (2001). https://doi.org/10.1364/OL.26.000277
  11. Butkute, A., Jonusauskas, L., 3D manufacturing of glass microstructures using femtosecond laser, Micromachines, 12, 5, p.499, (2021).
  12. Osellame, R., Hoekstra, H. J., Cerullo, G., Pollnau, M., Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips, Laser & Photonics Reviews, 5, 3, p.442~463, (2011). https://doi.org/10.1002/lpor.201000031
  13. Butkute, A., Baravykas, T., Stancikas, J., Tickunas, T., Vargalis, R., Paipulas, D., Jonusauskas, L., Optimization of selective laser etching (SLE) for glass micromechanical structure fabrication, Optics express, 29, 15, p.23487~23499, (2021). https://doi.org/10.1364/OE.430623
  14. Sohn, I. B., Choi, H. K., Yoo, D., Noh, Y. C., Sung, J. H., Lee, S. K., Lee, H., Synchronized femtosecond laser pulse switching system based nano-patterning technology, Optical Materials, 69, p.295~302, (2017). https://doi.org/10.1016/j.optmat.2017.04.055
  15. Gottmann, J., Hermans, M., Repiev, N., Ortmann, J., Selective laser-induced etching of 3D precision quartz glass components for microfluidic applications-up-scaling of complexity and speed, Micromachines, 8, 4, p.110, (2017).
  16. Wei, C., He, H., Deng, Z., Shao, J., Fan, Z., Study of thermal behaviors in CO2 laser irradiated glass, Optical Engineering, 44, 4, p.044202~044202, (2005) https://doi.org/10.1117/1.1882374