• Title/Summary/Keyword: Weighted scheduling

Search Result 134, Processing Time 0.025 seconds

A Modified Dynamic Weighted Round Robin Cell Scheduling Algorithm

  • Kwak, Ji-Young;Nam, Ji-Seung;Kim, Do-Hyun
    • ETRI Journal
    • /
    • v.24 no.5
    • /
    • pp.360-372
    • /
    • 2002
  • In this paper, we propose the modified dynamic weighted round robin (MDWRR) cell scheduling algorithm, which guarantees the delay property of real-time traffic and also efficiently transmits non-real-time traffic. The proposed scheduling algorithm is a variation of the dynamic weighted round robin (DWRR) algorithm and guarantees the delay property of real-time traffic by adding a cell transmission procedure based on delay priority. It also uses a threshold to prevent the cell loss of non-real-time traffic that is due to the cell transmission procedure based on delay priority. Though the MDWRR scheduling algorithm may be more complex than the conventional DWRR scheme, considering delay priority minimizes cell delay and decreases the required size of the temporary buffer. The results of our performance study show that the proposed scheduling algorithm has better performance than the conventional DWRR scheme because of the delay guarantee of real-time traffic.

  • PDF

Heuristics for Job Shop Scheduling Problems with Progressive Weighted Tardiness Penalties and Inter-machine Overlapping Sequence-dependent Setup Times

  • Mongkalig, Chatpon;Tabucanon, Mario T.;Hop, Nguyen Van
    • Industrial Engineering and Management Systems
    • /
    • v.4 no.1
    • /
    • pp.1-22
    • /
    • 2005
  • This paper presents new scheduling heuristics, namely Mean Progressive Weighted Tardiness Estimator (MPWT) Heuristic Method and modified priority rules with sequence-dependent setup times consideration. These are designed to solve job shop scheduling problems with new performance measures - progressive weighted tardiness penalties. More realistic constraints, which are inter-machine overlapping sequence-dependent setup times, are considered. In real production environments, inter-machine overlapping sequence-dependent setups are significant. Therefore, modified scheduling generation algorithms of active and nondelay schedules for job shop problems with inter-machine overlapping sequence-dependent setup times are proposed in this paper. In addition, new customer-based measures of performance, which are total earliness and progressive weighted tardiness, and total progressive weighted tardiness, are proposed. The objective of the first experiment is to compare the proposed priority rules with the consideration of sequence-dependent setup times and the standard priority rules without setup times consideration. The results indicate that the proposed priority rules with setup times consideration are superior to the standard priority rules without the consideration of setup times. From the second experiment and the third experiment to compare the proposed MPWT heuristic approach with the efficient priority rules with setup times consideration, the MPWT heuristic method is significantly superior to the Batched Apparent Tardiness Cost with Sequence-dependent Setups (BATCS) rule, and other priority rules based on total earliness and progressive weighted tardiness, and total earliness and tardiness.

Weighted Adaptive Opportunistic Scheduling Framework for Smartphone Sensor Data Collection in IoT

  • M, Thejaswini;Choi, Bong Jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.12
    • /
    • pp.5805-5825
    • /
    • 2019
  • Smartphones are important platforms because of their sophisticated computation, communication, and sensing capabilities, which enable a variety of applications in the Internet of Things (IoT) systems. Moreover, advancements in hardware have enabled sensors on smartphones such as environmental and chemical sensors that make sensor data collection readily accessible for a wide range of applications. However, dynamic, opportunistic, and heterogeneous mobility patterns of smartphone users that vary throughout the day, which greatly affects the efficacy of sensor data collection. Therefore, it is necessary to consider phone users mobility patterns to design data collection schedules that can reduce the loss of sensor data. In this paper, we propose a mobility-based weighted adaptive opportunistic scheduling framework that can adaptively adjust to the dynamic, opportunistic, and heterogeneous mobility patterns of smartphone users and provide prioritized scheduling based on various application scenarios, such as velocity, region of interest, and sensor type. The performance of the proposed framework is compared with other scheduling frameworks in various heterogeneous smartphone user mobility scenarios. Simulation results show that the proposed scheduling improves the transmission rate by 8 percent and can also improve the collection of higher-priority sensor data compared with other scheduling approaches.

A cell scheduling of a logically separated buffer in ATM switch (ATM 스위치에서 논리적으로 분할된 버퍼의 셀 스케쥴링)

  • 구창회;나지하;박권철;박광채
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.8
    • /
    • pp.1755-1764
    • /
    • 1997
  • In this paper, we proposed the mechanism for the buffer allocation and a cell scheduling method with logical separation a single buffer in the ATm switch, and analyzed the cell loss probability and the delay of each trafic (CBR/VBR/ABR) based on the weighted value and the dynamic cell service scheduling algorithm. The proposed switch buffering system classifies composite trafics incoming to the switch, according to the characteristic of traffic, then stores them in the logically separated buffers, and adopts the round-robin service with weighted value in order to transmit cells in buffers though one output port. We analyzed 4 cell service scheduling algorithms with dynamic round-robinfor each logically separated service line of a single buffer, in which buffers have the respective weighted values and 3 classes on mixed traffic which characteristized by traffic descriptor. In simulation, using SIMCRIPT II.5., we model the VBR and the ABR traffics as ON/OFF processes, and the CBR traffic as a Poisson processes. As the results of analysis according to the proposed buffer management mechanism and cell service algorithm, we have found that the required QoS of each VC can be quaranteed depends on a scale of weighted values allocated to buffers that changed the weighted values, and cell scheduling algorithm.

  • PDF

Scheduling Algorithms for Minimizing Total Weighted Flowtime in Photolithography Workstation of FAB (반도체 포토공정에서 총 가중작업흐름시간을 최소화하기 위한 스케쥴링 방법론에 관한 연구)

  • Choi, Seong-Woo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.1
    • /
    • pp.79-86
    • /
    • 2012
  • This study focuses on the problem of scheduling wafer lots of several recipe(operation condition) types in the photolithography workstation in a semiconductor wafer fabrication facility, and sequence-dependent recipe set up times may be required at the photolithography machines. In addition, a lot is able to be operated at a machine when the reticle(mask) corresponding to the recipe type is set up in the photolithography machine. We suggest various heuristic algorithms, in which developed recipe selection rules and lot selection rules are used to generate reasonable schedules to minimizing the total weighted flowtime. Results of computational tests on randomly generated test problems show that the suggested algorithms outperform a scheduling method used in a real manufacturing system in terms of the total weighted flowtime of the wafer lots with ready times.

STOCHASTIC SINGLE MACHINE SCHEDULING WITH WEIGHTED QUADRATIC EARLY-TARDY PENALTIES

  • Zhao, Chuan-Li;Tang, Heng-Yong
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.5_6
    • /
    • pp.889-900
    • /
    • 2008
  • The problem of scheduling n jobs on a single machine is considered when the machine is subject to stochastic breakdowns. The objective is to minimize the weighted squared deviation of job completion times from a common due date. Two versions of the problem are addressed. In the first one the common due date is a given constant, whereas in the second one the common due date is a decision variable. In each case, a general form of deterministic equivalent of the stochastic scheduling problem is obtained when the counting process N(t) related to the machine uptimes is a Poisson process. It is proved that an optimal schedule must be V-shaped in terms of weighted processing time when the agreeable weight condition is satisfied. Based on the V-shape property, two dynamic programming algorithms are proposed to solve both versions of the problem.

  • PDF

Minimizing the Weighted Mean Absolute Deviation of Completion Times about a Common Due Date (공통납기에 대한 완료시간의 W.M.A.D. 최소화에 관한 연구)

  • 오명진;최종덕
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.13 no.21
    • /
    • pp.143-151
    • /
    • 1990
  • This paper studies a single machine scheduling problem in which all jobs have the common due date and penalties are assessed for jobs at different rates. The scheduling objective is to minimize the weighted mean absolute deviations(WMAD). This problem may provide greater flexibility in achieving scheduling objectives than the mean absolute deviation (MAD) problem. We propose three heuristic solution methods based on several dominance conditions. Numerical examples are presented. This article extends the results to the problem to the problem of scheduling n-jobs on m-parallel identical processors in order to minimize the weighted mean absolute deviation.

  • PDF

Scheduling Orders for Minimizing Total Weighted Tardiness (가중납기지연시간을 고려한 최적 주문처리순서에 관한 연구)

  • Lee, Ik-Sun;Yoon, Sang-Hum
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.33 no.2
    • /
    • pp.87-101
    • /
    • 2008
  • This paper considers an order scheduling model to minimize the total weighted tardiness of orders. Each order requires different types of products. Each type of product is manufactured on its dedicated machine specified in advance. The completion time of each order is represented by the time when all the products belonging to the order are completed. The objective of this paper is to find the optimal production schedule minimizing the total weighted tardiness of a finite number of orders. In the problem analysis, we first derive a powerful solution property to determine the sequence of two consecutive orders. Moreover, two lower bounds of objective are derived and tested along with the derived property within a branch-and-bound scheme. Two efficient heuristic algorithms are also developed. The overall performances of the proposed property, branch-and-bound and heuristic algorithms are evaluated through various numerical experiments.

Scheduling with regard to start lag in process group (공정 그룹별 Start lag을 고려한 스케쥴링)

  • 전태준;박성호
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.10a
    • /
    • pp.299-302
    • /
    • 1996
  • The purpose of this study is developing scheduling logic and program for machining scheduling of automobile part production line with unbalanced processing time. Three rules are developed to minimize slack and effect on other job. Fourth rule is suggested which considered weighted sum of three factors. schedule is generated totally 1, 000 times and then optimal weight parameter is selected. The program is developed to schedule situation to compare with the performance measure, total finish time of machine and total tardiness of part. As a result, the rule which considered weighted sum of three factors is effective for both measure.

  • PDF

A study on Flow Shop Scheduling Problems with Different Weighted Penalties and a Common Due Date (차별 벌과금과 공통납기를 고려한 흐름작업 일정 계획에 관한 연구)

  • Lee, Jeong-Hwan;No, In-Gyu
    • Journal of Korean Society for Quality Management
    • /
    • v.19 no.2
    • /
    • pp.125-132
    • /
    • 1991
  • This paper is concerned with the flow shop scheduling problems considering different weighted penalty costs for earliness and lateness, and a common due date. The objective of the paper is to develop an efficient heuristic scheduling algorithm for minimizing total penalty costs and for determining the optimal common due date. The positional weight index and, the product sum method are used. A numerical example is given for illustrating the proposed algorithm.

  • PDF