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Abstract 
 

Smartphones are important platforms because of their sophisticated computation, 
communication, and sensing capabilities, which enable a variety of applications in the Internet 
of Things (IoT) systems. Moreover, advancements in hardware have enabled sensors on 
smartphones such as environmental and chemical sensors that make sensor data collection 
readily accessible for a wide range of applications. However, dynamic, opportunistic, and 
heterogeneous mobility patterns of smartphone users that vary throughout the day, which 
greatly affects the efficacy of sensor data collection. Therefore, it is necessary to consider 
phone users mobility patterns to design data collection schedules that can reduce the loss of 
sensor data. In this paper, we propose a mobility-based weighted adaptive opportunistic 
scheduling framework that can adaptively adjust to the dynamic, opportunistic, and 
heterogeneous mobility patterns of smartphone users and provide prioritized scheduling based 
on various application scenarios, such as velocity, region of interest, and sensor type. The 
performance of the proposed framework is compared with other scheduling frameworks in 
various heterogeneous smartphone user mobility scenarios. Simulation results show that the 
proposed scheduling improves the transmission rate by 8 percent and can also improve the 
collection of higher-priority sensor data compared with other scheduling approaches.  
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1. Introduction 

Internet of Things (IoT) technology is emerging rapidly and will become part of our 
day-to-day lives in the future by connecting anything, anywhere, at any time [1], [2], [3], [4], 
[5]. IoT comprises nearly all industries and applications such as home automation, building 
automation, health care, education, environment maintenance, intelligent transportation, smart 
appliances, smart campuses, smart grids, and smart cities [6], [7], [8], [9], [10]. Some believe 
that in the near future, hundreds of billions of devices will be connected to each other through 
the Internet using various communication technologies. 

Smartphones are a rich platform for IoT as they not only are equipped with multiple 
communication technologies and powerful processing power, but can also be equipped with 
many different types of sensors such as ambient light and proximity detector, magnetometer, 
accelerometer, gyroscope, camera, microphone, GPS, barometer, temperature sensor, 
humidity sensor, fingerprint scanner, and heart rate monitor [11], [12], [13]. Moreover, with 
continued advancements in hardware technology, we can expect to have smartphones 
equipped with even more advanced and sophisticated sensors [13], [14], [15], [16]. 
Smartphones can also be used as relays or data gathering devices for wireless sensors networks 
and vehicular sensor networks. 

Using smartphone sensing to facilitate IoT applications raises many research issues; one of 
the main issues is designing efficient scheduling for smartphone sensor data acquisition. 
Human-carried smartphones enable opportunistic networking due to the uncertainty of user 
mobility patterns. Opportunistic data collection refers to collecting smartphone sensor data 
whenever a smartphone opportunistically comes in contact with a designated destination such 
as the base station, sink node, central/cloud server. 

The mobility patterns of smartphone users vary daily based on their activities (walking, 
running, etc.) and modes of transportation, and the success of smartphone sensor data 
transmissions is largely affected by these mobility patterns. Users dynamic, unpredictable, 
heterogeneous, and opportunistic mobility leads to unstable communication, increasing data 
delay and loss. Furthermore, smartphone sensor data collection is data-oriented, which means 
that to facilitate pervasive IoT applications, sensor data needed for the targeted application are 
given high priority rather than simply collecting raw sensor data. Therefore, a novel approach 
is needed for scheduling data collection from smartphones. The scheduling approach should 
also be adaptive to the unpredictable and opportunistic nature of mobility patterns of 
smartphone users to reduce unsuccessful data transmissions. 

This paper provides a new weighted adaptive opportunistic scheduling framework for 
collecting smartphones sensor data. The main objectives of the proposed work are to reduce 
the loss of important smartphone sensors data, which is application-oriented and also to reduce 
the rate of unsuccessful transmissions, which is mobility dependent. This is achieved by 
providing prioritized scheduling that involves the calculation of adaptive scheduling duration 
and assignment of appropriate weights to application parameters, mobility parameters, and 
geographic region of interest. In particular, we make the following contributions:   

• We propose a generalized weighted scheduling framework that can collect 
application-specific sensor data from smartphones with dynamic and heterogeneous 
mobility patterns by considering the velocity, the geographic region of interest, and 
the priority of sensors.  
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• The proposed scheduling framework is adaptive to the dynamic mobility patterns of 
smartphone users to achieve high transmission of valued sensor data.  

• We demonstrate improved sensor data collection and transmission compared with 
randomized and distance-based scheduling frameworks under a scenario with both 
walking and vehicle mobility patterns. 

The remainder of this paper is organized as follows. Section 2 presents related work. 
Section 3 describes the system model for the proposed work. Section 4 gives a description of 
the proposed weighted adaptive opportunistic scheduling framework. Section 5 discusses the 
evaluation of simulation results, and Section 6 concludes the paper.  

2. Related Work 
There are many scheduling algorithms in the literature for improving throughput and quality 
of service in mobile communications; the different algorithms use various physical, network, 
and application layer parameters in their scheduling approach. For example, a physical layer 
parameter, signal-to-interference ratio, is used for scheduling vehicle node data rates [17]. For 
this work, we gave higher priority to the nodes that were moving away from the base station. 
Some researchers used network parameters such as priority and deadline of packets to 
schedule time-critical IoT smart city applications to reduce packet loss rate, average waiting 
time, and end-to-end delay [18]. Others used application parameters such as trust, reputation, 
and usefulness of information to schedule a pothole detection application for smart cities to 
reducing data traffic and bandwidth usage [19]. 

There are also some smartphone-based opportunistic data collection frameworks in the 
literature, specifically to facilitate IoT and smart city applications. Some researchers proposed 
an opportunistic mobile crowdsensing framework for collecting sensor data from pedestrian 
mobile devices in smart cities with the aim of minimizing the cost of sensing and reporting 
sensed data [20]. Other authors proposed a cost-efficient smart device application for 
opportunistic sensor data collection to monitor indoor air quality [21]. In opportunistic mobile 
networks, there are more chances to miss required data due to heterogeneous mobility patterns 
of smart device users, and efficient data collection scheduling methodologies are required to 
reduce the loss of mobile data. There are also many mobile data collection scheduling methods 
proposed based on mobility parameters. The velocity of users (high or low), determined from 
the channel quality indicator, has been used to schedule LTE resources blocks [22].  

Some researchers proposed a shortest-job-first random walk mobility scheduling algorithm 
to collect mobile node data, with scheduling time based on mobility and operation length of 
mobile nodes; expanding the transmission power of data collection nodes is also considered 
for decreasing incomplete tasks [23]. Researchers have also used flight length and pause time 
of a truncated Levy walk mobility model for scheduling mobile nodes [24]; these researchers 
gave higher priority to the mobile nodes that were more likely to visit larger areas and have 
smaller pause times. Other investigators proposed a human mobility-based weighted 
algorithm for selecting an efficient cluster head that could collect cell phone sensor data [25, 
26]. The authors of those studies considered such mobility parameters as flight length and 
distance and mobile node velocity to be important parameters in addition to the residual 
energy limit of mobile nodes. A scheduling algorithm based on the duration of stay was also 
proposed for mobile crowd sensed data collection [27]; those authors gave higher priority to 
mobile nodes that stayed within range of the base station for a short period to reduce data loss. 
 



5808                                                                                   Thejaswini et al.: Weighted Adaptive Opportunistic Scheduling Framework 
for Smartphone Sensor Data Collection in IoT 

 
However, when collecting sensor data from smartphones to support IoT applications, it is 

necessary to combine adaptive and application-oriented scheduling approaches to cope with 
the unpredictable, heterogeneous, and opportunistic nature of user mobility and to minimize 
the loss of required sensor data. To the best of our knowledge, none of the authors of the 
above-mentioned existing works provided combined approaches. Thus, we aim to provide a 
new weighted adaptive opportunistic scheduling framework for smartphone sensor data 
collection. Specifically, the mobility parameters (velocity, geographical region) and 
application parameters (specific sensor data) are combined using a weight assignment model; 
the weight assignments are formulated so that they can be applied readily to meet the various 
requirements of different IoT applications. Consideration of other parameters such as duration 
of stay inside the base station, arriving rate, and departure rate is not feasible as an accurate 
prediction of these parameters requires high computational complexity. 
    Moreover, we consider a heterogeneous smartphone mobility scenario that involves both 
vehicular mobility (where smartphone users are traveling in vehicles) and pedestrian (users are 
on foot) mobility. Researchers have proposed and considered heterogeneous mobility 
scenarios, such as a vehicle-to-pedestrian broadcasting algorithm based on the Manhattan 
mobility model (vehicular mobility model) and the SLAW model (human mobility model) 
[28]. However, our proposed scheduling framework collects data from smartphones under 
heterogeneous mobility scenario and can be easily applied to support various data collection 
application scenarios.  

3. System Model 

3.1 Communication Scenario 
As shown in Fig. 1, a fixed base station 𝐵𝐵𝐵𝐵 with a maximum communication range of 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 is 
placed at the center of a simulation area of  𝑚𝑚2. Let 𝐻𝐻 and 𝑊𝑊 represent the total number of 
vehicle nodes and pedestrian nodes in the simulation area, respectively. Here, we use the term 
pedestrian node to indicate smartphone users on foot and vehicle node to indicate users in 
vehicles. We use the term mobile node to denote both pedestrian and vehicle nodes; we 
consider these two nodes because they are the most common mobility patterns of smartphone 
users. However, other mobile nodes can be easily added to our framework because we use 
generic mobility characteristics to configure the framework. We assume that mobile nodes are 
embedded with sensors and GPS (to obtain velocity and current location values) and they have 
adequate storage space. We also assume that smartphones always have some sensor data 
(application related, either self-generated or collected from other devices) to transmit to the 
𝐵𝐵𝐵𝐵 within the communication range. 
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Fig. 1. Basic communication scenario. 

 

 
Fig. 2. Regions based on the communication range. 

 

 
Fig. 3. Regions based on road-lane 

3.2 Mobility Model 
To verify the effects of different mobility patterns on our proposed framework under various 
scenarios, we use a mixture of some well-defined mobility models. Human walking patterns 
closely follow Levy walk (LW) patterns [29]. Authors of [30] used outdoor GPS traces 
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collected from many volunteers to study human mobility patterns; proposed the LW mobility 
model, which depicts the statistical properties of human mobility. Therefore, we use the LW 
mobility model [30] to generate mobility traces of the pedestrian nodes; for the vehicle nodes, 
we use the well-known Manhattan mobility model using MobiSim [31], [32]. Other authors 
have provided more details on the statistical features of the LW and Manhattan mobility 
models [30, 31, 32, 33]. Roads are considered to be two-way, and the movement of the vehicle 
nodes is restricted to roads; the movement of pedestrian nodes is not restricted to roads. 

3.2 Mobility Model 
The received signal power from a transmitting source mobile node located 𝐷𝐷 meters away, 
𝑃𝑃𝑟𝑟(𝐷𝐷), is calculated using the Friis free space model [34], [35], given as  

𝑃𝑃𝑟𝑟(𝐷𝐷) = 𝑃𝑃𝑡𝑡𝐺𝐺𝑡𝑡𝐺𝐺𝑟𝑟
𝜆𝜆2

(4𝜋𝜋𝜋𝜋)2
 , (1) 

where 𝑃𝑃𝑡𝑡, 𝐺𝐺𝑡𝑡, 𝐺𝐺𝑟𝑟, and 𝜆𝜆 represent transmitted power, transmitter gain, receiver gain, and the 
wavelength of the transmitted wave, respectively. The received signal strength (𝑅𝑅𝑅𝑅𝑅𝑅) [18, 31, 
34] is calculated as 

𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑃𝑃𝑟𝑟(𝑑𝑑0) + 10𝜂𝜂log 𝑑𝑑0
𝐷𝐷

+ 𝑋𝑋𝜎𝜎, (2) 
where 𝑃𝑃𝑟𝑟(𝑑𝑑0)  and 𝜂𝜂  represent received power at the reference distance 𝑑𝑑0  and path loss 
exponent, respectively. 𝑋𝑋𝜎𝜎 is a Gaussian random variable with zero mean and variance in 
𝑑𝑑𝑑𝑑. 

4. Proposed Scheduling Framework 
This section provides a description of the proposed weighted adaptive opportunistic 
scheduling framework. The pseudocode of the framework is given in Algorithm 1.  
__________________________________________________________________________________ 

Algorithm 1: Weighted Adaptive Opportunistic Scheduling Framework 
__________________________________________________________________________ 
1:  Let 𝑀𝑀 be the total number of mobile nodes in an area 𝐴𝐴 where 𝑀𝑀 = 𝐻𝐻 + 𝑊𝑊 and  𝐼𝐼  is the 
iteration number. 
2:  𝐼𝐼 = 0 
3:  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
4:  while 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≤ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 do 
5:  𝐼𝐼 = 𝐼𝐼 + 1  
6:  𝐵𝐵𝐵𝐵 broadcasts 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 packet  
7:  𝐵𝐵𝐵𝐵 waits 𝑇𝑇𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 to receive replies from mobile nodes 
8:  𝑁𝑁(𝐼𝐼) (𝑁𝑁(𝐼𝐼) ⊆ 𝑀𝑀) mobile nodes send 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 packet to 𝐵𝐵𝐵𝐵  
9:  𝐵𝐵𝐵𝐵 computes the schedule duration 𝑇𝑇𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝐼𝐼) of the iteration (Equation (7))  
10:  for every 𝑁𝑁(𝐼𝐼) mobile node do 
11:  𝐵𝐵𝐵𝐵 computes the weights of mobile nodes (Equation (4))   
12:  end for 
13:  𝐵𝐵𝐵𝐵 sort mobile nodes in descending order of weights  
14:  𝐵𝐵𝐵𝐵 broadcasts the time slot schedule to mobile nodes specified in 𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒 packet  
15:  Each mobile node transmits data according to its schedule  
16:  if (𝑇𝑇𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝐼𝐼) ≤ 𝑇𝑇𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝐼𝐼)𝑙𝑙𝑙𝑙𝑙𝑙)  then 
17:  𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝐼𝐼) = 𝑇𝑇𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝑇𝑇𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒 + 𝑇𝑇𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝐼𝐼)  
18:  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠+𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝐼𝐼)  
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19:  else 
20:  𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝐼𝐼) = 𝑇𝑇𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝑇𝑇𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒 + 𝑇𝑇𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝐼𝐼)𝑙𝑙𝑙𝑙𝑙𝑙  
21:  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠+𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝐼𝐼)     
22:  end if 
23:  end while 
__________________________________________________________________________________ 
 
__________________________________________________________________________________ 
Algorithm 2: Assignment of weights to the velocity and region of interest parameters 
__________________________________________________________________________________  
1:  Assigning weight to velocity parameter   
2:  if 𝑣𝑣𝑗𝑗(𝑡𝑡𝑝𝑝) ∈ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑦𝑦𝑣𝑣, where 𝑣𝑣 = 1,2, . . . ,𝑉𝑉 then   
3:  𝑊𝑊𝑉𝑉𝑉𝑉𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑦𝑦𝑗𝑗 = 𝑤𝑤𝑣𝑣

𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ∗ 𝛾𝛾 (Equation 6))   
4:  end if 
5:  Assigning a weight to the region of interest parameter 
6:  if  (𝑥𝑥𝑗𝑗(𝑡𝑡𝑝𝑝), 𝑦𝑦𝑗𝑗(𝑡𝑡𝑝𝑝)) lies in  𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟, where 𝑟𝑟 = 1,2, . . . ,𝑅𝑅 then 
7:  𝑊𝑊𝑅𝑅𝑅𝑅𝐼𝐼𝑗𝑗 = 𝑤𝑤𝑟𝑟

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 
8:  end if  
__________________________________________________________________________________  
 

4.1 Initiation from Base Station 
At the beginning of every scheduling iteration, the 𝐵𝐵𝐵𝐵 broadcasts a 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 packet that 
consists of the ID of the 𝐵𝐵𝐵𝐵 (𝐼𝐼𝐷𝐷𝐵𝐵𝐵𝐵), location coordinate of the 𝐵𝐵𝐵𝐵 (𝑥𝑥𝐵𝐵𝐵𝐵 ,𝑦𝑦𝐵𝐵𝐵𝐵), and a list of 
parameters to be obtained from mobile nodes. The requested parameters are a location 
coordinate of the mobile node, the velocity of the mobile node, and available sensors on the 
mobile node. Then, the 𝐵𝐵𝐵𝐵  waits until it receives replies from mobile nodes for 𝑇𝑇𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 
computed as 

𝑇𝑇𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 > 𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,     (3) 
where 𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is the maximum time taken for the 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 packet to reach all mobile 
nodes in the communication range of the 𝐵𝐵𝐵𝐵, 𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is the time mobile nodes take to 
process the required information, and 𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is the maximum time taken for the 𝐵𝐵𝐵𝐵 to 
receive 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 packets from the mobile nodes in the communication range of the BS. 

4.2 Replies from Mobile Nodes 
Once mobile node 𝑗𝑗, where 𝑗𝑗 = 1,2, … ,𝑁𝑁, receives a 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 packet, it sends back the 
requested parameters to the 𝐵𝐵𝐵𝐵  using a 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  packet. In detail, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 
packets consist of the ID of the mobile node (𝐼𝐼𝐷𝐷𝑗𝑗), location coordinate of the mobile node at 
the time 𝑡𝑡𝑝𝑝 (𝑥𝑥𝑗𝑗(𝑡𝑡𝑝𝑝), 𝑦𝑦𝑗𝑗(𝑡𝑡𝑝𝑝)a ), the velocity of the mobile node (𝑣𝑣𝑗𝑗(𝑡𝑡𝑝𝑝)), and the IDs and 
corresponding types of sensors (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐷𝐷𝑗𝑗𝑗𝑗 , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑗𝑗𝑗𝑗) where 𝑖𝑖 = 1,2, … ,𝐶𝐶. Because 
each mobile node can have different number and types of sensors, 𝐶𝐶 may differ for each node. 

4.3 Calculating Weights 
Based on the information obtained from the 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 packets received from the mobile 
nodes, the BS assigns the weights of each mobile node. The weight of node 𝑗𝑗 is computed as: 

𝑊𝑊𝑗𝑗 = 𝑊𝑊𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑗𝑗 + 𝑊𝑊𝑅𝑅𝑅𝑅𝐼𝐼𝑗𝑗 + 𝑊𝑊𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑦𝑦𝑗𝑗, (4) 
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where 𝑊𝑊𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑗𝑗 , 𝑊𝑊𝑅𝑅𝑅𝑅𝐼𝐼𝑗𝑗 , and 𝑊𝑊𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑦𝑦𝑗𝑗 are the weights of sensors, the region of interest (𝑅𝑅𝑅𝑅𝑅𝑅), 
and mobile node velocity, respectively. Higher transmission priorities are given to those nodes 
with higher assigned weights. 
 

The total weight of sensors of mobile node 𝑗𝑗  (𝑊𝑊𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑗𝑗 ) is assigned based on the 
availability of sensors on the mobile node and their weights decided by the 𝐵𝐵𝐵𝐵 based on their 
relative importance to the assumed application. We consider that there are 𝐾𝐾  important 
sensors to support a specific application. First, the availability of sensor type 𝑘𝑘 on mobile node 
𝑗𝑗  is indicated using a binary variable 𝑠𝑠𝑗𝑗𝑗𝑗  where 𝑘𝑘 = 1,2, … ,𝐾𝐾 ; here, 𝑠𝑠𝑗𝑗𝑗𝑗  equals 1 if 𝑘𝑘  is 
available on 𝑗𝑗  and 0 otherwise. Each sensor type is also given a weight 𝑤𝑤𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  that is 
assigned based on the specific requirements of the assumed application. For example, for an 
air pollution monitoring application, a higher weight is given to the 𝐶𝐶𝑂𝑂2 sensors among the 
different sensor types. Finally, the total weight of sensors of mobile node 𝑗𝑗 is calculated as 

𝑊𝑊𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑗𝑗 = ∑  𝐾𝐾
𝑘𝑘=1 𝑤𝑤𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 × 𝑠𝑠𝑗𝑗𝑗𝑗. (5) 

Consideration of multiple applications and collecting multiple sensors data at any Ith 
schedule iteration will lead to another set of complex tasks. Schedule duration, packets size, 
slot time parameters should be reconsidered when there are multiple applications. 
Performance in terms of collecting particular application related sensors data will decrease as 
multiple applications occupy data transmission slots. Therefore, it is better to consider the 
specific application at a time and sensor data which fit packet size 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 (Table 1. 
Simulation Parameters). If there is a greater number of sensor types and data exceeds 
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  packet size, then it can be scheduled to collect in consecutive schedule 
iterations. 

The pseudocode for calculating the weight of a mobile node’s RoI is given in Algorithm 2. 
The weight of an RoI of mobile node 𝑗𝑗 (𝑊𝑊𝑅𝑅𝑅𝑅𝐼𝐼𝑗𝑗) is assigned based on the geographical region of 
interest around the 𝐵𝐵𝐵𝐵, and the regions can be defined based on the application scenario, for 
example, based on the 𝐵𝐵𝐵𝐵 communication range or on-road lanes as shown in Fig. 2 and Fig. 3, 
respectively. Here, each region 𝑟𝑟 is given a positive integer weight between 1 and 𝑅𝑅, and its 
weight is assigned based on the specific requirements of the application; for example, a higher 
weight is given to the region closer to the edge of the 𝐵𝐵𝐵𝐵 to reduce the number of unsuccessful 
transmissions. Mobile nodes closer to the edge are more likely to move out of the 
communication range of the 𝐵𝐵𝐵𝐵 in the near future than those near the 𝐵𝐵𝐵𝐵. 

The pseudocode for calculating the weight of velocity of a mobile node is given in 
Algorithm 2. The weight of velocity of mobile node 𝑗𝑗 (𝑊𝑊𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑦𝑦𝑗𝑗) is assigned based on its 
velocity at time 𝑡𝑡𝑝𝑝 (𝑣𝑣𝑗𝑗(𝑡𝑡𝑝𝑝)). Velocities are divided into 𝑉𝑉 number of categories, and each 
category is assigned with a positive integer between 𝛾𝛾 and 𝑉𝑉 × 𝛾𝛾 and  𝛾𝛾 is calculated as  

𝛾𝛾 = 𝑅𝑅 + 𝐾𝐾. (6) 
The categories can be defined based on the mobility model and the specific requirements of 

the application; for example, if data from pedestrians is considered more important, then the 
category with ≤ 1.0𝑚𝑚/𝑠𝑠 is given a higher weight than other categories. Also, a higher weight 
can be given to the fast-moving nodes because they are more likely to move out of the 𝐵𝐵𝐵𝐵 
communication range in the near future than the slow-moving nodes. Note that relatively 
higher weight is given to the weight of mobile node velocity than other weights (weights of 
sensors and geographical region of interest) as velocity more significantly affects the 
transmission rate of mobile nodes. Multiplying 𝛾𝛾 (Equation (6)) with 𝑉𝑉 increases the weight 
of velocity parameter compared to the weight of sensors and geographical region of interest. 
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Finally, the weights of mobile nodes are normalized, and the scheduling duration (in 

seconds) of the given iteration (𝐼𝐼) is computed adaptively based on the total number of mobile 
nodes available (𝑁𝑁(𝐼𝐼)) in the range of the 𝐵𝐵𝐵𝐵 as  

𝑇𝑇𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝐼𝐼) = ⌊ 𝑁𝑁(𝐼𝐼)
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛_𝑝𝑝𝑝𝑝𝑝𝑝_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

⌋, (7) 
where 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛_𝑝𝑝𝑝𝑝𝑝𝑝_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is the number of nodes allowed to transmit their respective sensor 
data in one second. Here, each node can transmit its sensor data for = ⌊ 1000

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛_𝑝𝑝𝑝𝑝𝑝𝑝_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
⌋ 𝑚𝑚𝑚𝑚. It 

is important to note that the proposed scheduling approach is adaptive: 𝑇𝑇𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝐼𝐼) varies at 
each iteration. We set a limit for 𝑇𝑇𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝐼𝐼) because long schedule durations increase delays 
and may cause loss of important sensor data from incoming mobile nodes that are to be 
scheduled in the next iteration. The maximum schedule duration of an iteration is calculated as  

𝑇𝑇𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝐼𝐼)𝑙𝑙𝑙𝑙𝑙𝑙 = ⌈ 𝐴𝐴𝐴𝐴𝐴𝐴_𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛_𝑝𝑝𝑝𝑝𝑝𝑝_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

+ 1⌉ (8) 
where 𝐴𝐴𝐴𝐴𝐴𝐴_𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 is the average number of mobile nodes in the range of the 𝐵𝐵𝐵𝐵 at any 
given time instance. After computing the weights of mobile nodes, the 𝐵𝐵𝐵𝐵 broadcasts a 𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒 
packet that contains the schedule of transmission slots of mobile nodes for the given iteration. 
Data transmission of a mobile node 𝑗𝑗 is considered successful if the 𝑅𝑅𝑅𝑅𝑅𝑅 of 𝑗𝑗 is greater than 
the receiver sensitivity threshold 𝑅𝑅𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠 ; otherwise, the data transmission is considered 
unsuccessful. The availability or absence of any sensor type 𝑘𝑘 on mobile node 𝑗𝑗 is assigned 
with a random binary value; at each successful transmission, data of respective sensor type 
from any mobile node, if available, is counted as one unit of data. 

5. Simulation Results and Discussion 
In this section, we present the performance evaluation of the proposed weighted adaptive 
opportunistic scheduling framework; we implement the proposed framework using MATLAB, 
and the simulation parameters are shown in Table 1. For a proof of concept, the simulation is 
conducted for a simple case with 100 vehicle and 100 pedestrian nodes in an area of 500 𝑚𝑚 × 
500 𝑚𝑚. As mentioned in our system model, pedestrian nodes have no restricted path; their 
minimum, average, and maximum velocities are 0.52 m/s, 1.35 m/s, and 2.82 m/s, respectively, 
with an average velocity close to the average human walking velocity [36]. The minimum and 
maximum velocities of vehicle nodes are 2.0 m/s and 10.0 m/s, respectively. 

We use the term 𝑊𝑊𝑊𝑊𝑊𝑊  (weighted adaptive opportunistic) to denote the proposed 
framework. Because there is no comparable framework for collecting data from smartphone 
sensors under heterogeneous human mobility scenarios, we compare our scheduling approach 
with two other general scheduling strategies, termed 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅. In 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 
scheduling, mobile nodes are sorted and assigned time slots according to their relative 
distances from the 𝐵𝐵𝐵𝐵 at time 𝑡𝑡𝑝𝑝, calculated as  

𝛿𝛿𝑗𝑗(𝑡𝑡𝑝𝑝) = �(𝑥𝑥𝐵𝐵𝐵𝐵 − 𝑥𝑥𝑗𝑗(𝑡𝑡𝑝𝑝))2 + (𝑦𝑦𝐵𝐵𝐵𝐵 − 𝑦𝑦𝑗𝑗(𝑡𝑡𝑝𝑝))2. (9) 

 To reduce the number of unsuccessful transmissions, the mobile nodes that are closer to 
the edge or far away from the 𝐵𝐵𝐵𝐵 are given a higher priority. In the 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 scheduling, 
mobile nodes are chosen randomly, and their time slots are also assigned randomly. The 
number of sensor types (𝐾𝐾) is set to 6, and named 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑟𝑟1, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟2, … , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟6 ; here, 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟6  is given the highest priority and 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟1  the lowest. There are three regions of 
interest (𝑅𝑅 = 3) and five categories of velocity (𝑉𝑉 = 5). Usually, chances of unsuccessful data 
transmissions are more from mobile nodes which are at the end of communication range of BS 
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and moving with high velocity. To reduce unsuccessful data transmission rate, a higher weight 
is given to the nodes with higher velocity and to the region closer to the edge of the 𝐵𝐵𝐵𝐵 
communication range. 

5.1 Results under the Base Scenario 
The numbers of pedestrian and vehicle nodes in the communication range of the 𝐵𝐵𝐵𝐵 in each 
iteration are shown in Fig. 4; their averages are shown using straight horizontal lines. The 
result shows that there is more vehicle than the pedestrian, which is because the number of 
incoming and outgoing vehicles increases as the velocity increases. The varying scheduling 
duration (𝑇𝑇𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝐼𝐼)) is shown in Fig. 5. Our proposed framework can adaptively change 
the scheduling duration for each iteration according to the number of available mobile nodes 
(𝑁𝑁(𝐼𝐼)) in the communication range; the total number of iterations is 60 and 𝑇𝑇𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝐼𝐼)𝑙𝑙𝑙𝑙𝑙𝑙 is 
26 𝑠𝑠. Fig. 6 and Fig. 7 show the number of successful and unsuccessful transmissions, 
respectively, averaged over all iterations. The standard errors for both figures are 0.49, 0.58, 
and 0.52 for 𝑊𝑊𝑊𝑊𝑊𝑊, 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷, and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 methods, respectively, which are negligible. The 
proposed scheduling framework is shown to reduce the rate of unsuccessful transmissions by 8% 
and 10% compared with the others. Under 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 scheduling, mobile nodes closer to the 
edge of the 𝐵𝐵𝐵𝐵 communication range are given high priority. Fast-moving vehicle nodes (or 
mobile nodes with high velocity) which are scheduled, but given low priority (as priority is 
based on distance) cause more unsuccessful transmissions. This verifies our idea that 
considering only a distance parameter is not a good choice to reduce unsuccessful 
transmissions. Still, the proposed scheduling framework achieves a higher rate of successful 
transmissions by considering velocity as an important parameter. Because the availability or 
absence of any sensor type 𝑘𝑘 of mobile node 𝑗𝑗 is assigned a random binary value, the number 
of different sensors types available averaged from the iterations varies as shown in Fig. 10(a). 
In Fig. 8 and Fig. 9, because the priority of the different type of sensor is not considered in 
either 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  or 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  scheduling, those methods lose more sensor data than our 
proposed scheduling framework. Even though the availability of high-priority sensors 
(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟6 and 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟5) is low (Fig. 10(a)), they receive a higher percentage of data than other 
considered sensors (Fig. 10(b)). This is achieved by assigning higher weights to 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟6 and 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟5 than to other sensor types. 
 

 
Fig. 4. Number of mobile nodes within communication range (𝑉𝑉=100, 𝐻𝐻 =100). 
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Fig. 5. Schedule duration (𝑉𝑉=100, 𝐻𝐻=100). 

 

   
 Fig. 6. Average number of successful transmissions (𝑉𝑉=100, 𝐻𝐻=100). 

 

 
Fig. 7. Average number of unsuccessful transmissions (𝑉𝑉=100, 𝐻𝐻=100). 
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 Fig. 8. Average number of sensor data units received (𝑉𝑉=100, 𝐻𝐻=100). 

 

 
Fig. 9. Average number of sensor data units lost (𝑉𝑉=100, 𝐻𝐻=100). 

 
(a)                                                                           (b) 

Fig. 10. (a) Average number of sensors available (𝑉𝑉=100, 𝐻𝐻=100). (b) Percentage of sensor data units 
received (𝑉𝑉=100, 𝐻𝐻=100). 
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5.2 Impact of High Node Density 
To analyze the impact of the density of mobile nodes, we increase 𝐻𝐻 and 𝑊𝑊 from 100 to 400, 
keeping the other parameters value same. Fig. 11 shows a similar trend from Figure Fig. 4 for 
the numbers of pedestrian and vehicle nodes in the communication range of the 𝐵𝐵𝐵𝐵. there are 
more vehicle nodes than the pedestrian nodes. The number of iterations has decreased to 18 
and the value of 𝑇𝑇𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝐼𝐼)𝑙𝑙𝑙𝑙𝑙𝑙 has increased to 98 𝑠𝑠 as shown in Fig. 12. this is because 
there are now a larger number of mobile nodes available under 𝐵𝐵𝐵𝐵 range. The proposed 
approach still achieves a higher rate of successful transmissions and a lower rate of 
unsuccessful transmissions in comparison with other approaches under a higher density of 
mobile nodes as shown in Fig. 13 and Fig. 14. The standard errors for the average number of 
successful/unsuccessful mobile nodes are negligible at 3.03, 3.28, and 3.87 for 𝑊𝑊𝑊𝑊𝑊𝑊 , 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷, and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 methods, respectively. Fig. 17(a) shows the number of availability 
of different types of sensors averaged from iterations and Figure Fig. 17(b) shows the 
percentage of respective sensors data received. From Fig. 15 and Fig. 16, even under the high 
density of mobile nodes, a collection of sensor data units (with respect to any 𝑘𝑘-th type sensor) 
is not affected for proposed scheduling framework compared to others. 
 

 
Fig. 11. Number of mobile nodes within communication range (High density: 𝑉𝑉 = 400, 𝐻𝐻 = 400) 

 

 
Fig. 12. Schedule duration (High density: 𝑉𝑉 = 400, 𝐻𝐻 = 400) 
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Fig. 13. Average number of successful transmissions (High density: 𝑉𝑉 = 400, 𝐻𝐻 = 400) 

 

 
Fig. 14. Average number of unsuccessful transmissions (High density: 𝑉𝑉 = 400, 𝐻𝐻 = 400) 

 

  
 

Fig. 15. Average number of sensors data units received (High density: 𝑉𝑉 = 400, 𝐻𝐻 = 400) 
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Fig. 16. Average number of sensors data units lost (High density: 𝑉𝑉 = 400, 𝐻𝐻 = 400) 

 

  
                                   (a)                                                             (b) 
 Fig. 17. (a) Average number of sensors available (High density: 𝑉𝑉 = 400, 𝐻𝐻 = 400), (b) Percentage 
of sensor data units received (High density: 𝑉𝑉 = 400, 𝐻𝐻 = 400) 
 

5.3 Impact of Scheduling Duration Limit 
We propose that the value of the scheduling duration 𝑇𝑇𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝐼𝐼)  has an upper limit 
(𝑇𝑇𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝐼𝐼)𝑙𝑙𝑙𝑙𝑙𝑙). Without the upper limit, the scheduling duration can increase to a very 
large value which can create large delays for the high priority data in the succeeding iteration. 
To verify our argument, we conduct simulations with and without an upper limit. This means 
that the lines 16 and 19-22 of Algorithm 1 are not executed. The results in Fig. 18 shows a 
similar trend as before. However, as shown in Fig. 19, there are many 𝑇𝑇𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝐼𝐼) values 
exceeding 98 seconds. Here, the total number of iterations is 18. Fig. 20 and Fig. 21 show the 
total number of successful and unsuccessful transmissions, respectively. In Fig. 20, the total 
number of successful transmissions is greater when 𝑇𝑇𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝐼𝐼)𝑙𝑙𝑙𝑙𝑙𝑙 is not considered but 
unsuccessful transmissions are also greater as shown in Fig. 21. The impact of the schedule 
duration limit is more evident in Fig. 21(a) and Fig. 21(b). Without 𝑇𝑇𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝐼𝐼)𝑙𝑙𝑙𝑙𝑙𝑙, the loss 
rate of sensor data units increases, specifically for the sensor types with high priorities (i.e., k = 
6, 5, 4), as shown in Figure Fig. 21(b). This is because the proposed approach considering 
𝑇𝑇𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝐼𝐼)𝑙𝑙𝑙𝑙𝑙𝑙 reduces the number of long scheduling iterations by avoiding long delays that 
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cause loss of important sensor data. Therefore, 𝑇𝑇𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝐼𝐼)𝑙𝑙𝑙𝑙𝑙𝑙 is essential for both avoiding 
unsuccessful transmissions and reducing the loss of important sensor data. 
 

 
 

Fig. 18. Number of mobile nodes within communication range (𝑉𝑉 = 400, 𝐻𝐻 = 400, no scheduling 
duration limit). 

  

 
 

Fig. 19. Schedule duration (𝑉𝑉 = 400, 𝐻𝐻 = 400, no scheduling duration limit). 
 

 
 

Fig. 20. Number of successful transmissions (𝑉𝑉 = 400, 𝐻𝐻 = 400, no scheduling duration limit). 
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Fig. 21. Number of unsuccessful transmissions (𝑉𝑉 = 400, 𝐻𝐻 = 400, no scheduling duration limit). 

 

 
                                        (a)                                                          (b) 
Fig. 22. (a)  Number of sensor data units received (𝑉𝑉 = 400, 𝐻𝐻 = 400, no scheduling duration limit). (b) 

Number of sensor data units lost (𝑉𝑉 = 400, 𝐻𝐻 = 400, no scheduling duration limit). 
 

 
Table 1. Simulation Parameters 

Parameter Value 
Simulation area (A) 500 𝑚𝑚 × 500 𝑚𝑚 

Simulation duration (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) 1900 𝑠𝑠 
Simulation start (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) 5 𝑠𝑠 
Simulation end (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) 1800 𝑠𝑠 

Mobility Model Parameter  
Total number of pedestrian nodes (𝑊𝑊) 100, 400 

LW flight parameter 𝛼𝛼 1.0 
LW pause parameter 𝛽𝛽 1 

LW average flight length 5-500 𝑚𝑚 
LW pause time 10-60 𝑠𝑠 

LW location sample interval 1 𝑠𝑠 
Min, Avg, Max pedestrian node velocity 0.50, 1.40, 3.78 𝑚𝑚/𝑠𝑠 

Total number of vehicle nodes (𝐻𝐻) 100, 400 
Vehicle pause time 0-60 𝑠𝑠 

Vehicle speed minimum-maximum 2-10 𝑚𝑚/𝑠𝑠 
Vehicle location sample interval 1 𝑠𝑠 
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Communication Network Parameter  
Number of base stations (𝐵𝐵𝐵𝐵) 1 

Frequency (IEEE 802.11) 2.4 GHz 
Transmission power (IEEE 802.11) 15 𝑑𝑑𝑑𝑑𝑑𝑑 

Reference distance (𝑑𝑑0) 1 𝑚𝑚 
Receiver sensitivity (𝑅𝑅𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠) -68 𝑑𝑑𝑑𝑑𝑑𝑑 

Path loss exponent (𝜂𝜂) 2 
Data rate 100 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 

Number of 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛_𝑝𝑝𝑝𝑝𝑝𝑝_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 3 
Size of 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 packet 300 bytes 

Size of 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 packet 400 bytes 
Length of 𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 5 𝑠𝑠 
Weight Parameter  

Number of sensor types (𝐾𝐾) 6 
Weights of sensor types (𝑤𝑤𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) 𝑘𝑘 (i.e, 1, 2, 3, 4, 5, 6) 

Number of regions (𝑅𝑅) 3 
Weights of regions (𝑤𝑤𝑟𝑟

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) 𝑟𝑟 (i.e., 1, 2, 𝑅𝑅) 
Number of velocity categories (𝑉𝑉) 5 

Weights of velocity (𝑤𝑤𝑣𝑣
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) 𝑣𝑣 (i.e., 1, 2, 𝑉𝑉) 

𝑤𝑤1
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ∗ 𝛾𝛾 (𝑣𝑣𝑗𝑗(𝑡𝑡𝑝𝑝) ≤ 1.0  𝑚𝑚/𝑠𝑠) 9 

𝑤𝑤2
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ∗ 𝛾𝛾 (1.0 ≤ 𝑣𝑣𝑗𝑗(𝑡𝑡𝑝𝑝) ≤ 1.4𝑚𝑚/𝑠𝑠) 18 

𝑤𝑤3
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ∗ 𝛾𝛾 (1.4 ≤ 𝑣𝑣𝑗𝑗(𝑡𝑡𝑝𝑝) ≤ 3.0  𝑚𝑚/𝑠𝑠) 27 

𝑤𝑤4
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ∗ 𝛾𝛾 (3.0 ≤ 𝑣𝑣𝑗𝑗(𝑡𝑡𝑝𝑝) ≤ 5.0  𝑚𝑚/𝑠𝑠) 36 

𝑤𝑤5
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ∗ 𝛾𝛾 (𝑣𝑣𝑗𝑗(𝑡𝑡𝑝𝑝) > 5.0  𝑚𝑚/𝑠𝑠) 45 

 

5.4 Network Complexity 
  In this paper, the proposed weighted adaptive opportunistic scheduling approach is explained 
in terms of network framework which involves transmission/broadcasting and receiving of 
packets between BS and mobile node(s). Therefore, overall computation complexity (or 
network computation complexity) of the proposed scheduling approach is the addition of 
computation complexity at a BS and mobile node(s). As given in Algorithm 1, each scheduling 
iteration runs for maximum 𝑇𝑇𝑠𝑠𝑐𝑐ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝐼𝐼)𝑙𝑙𝑙𝑙𝑙𝑙  or less then 𝑇𝑇𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝐼𝐼)𝑙𝑙𝑙𝑙𝑙𝑙 . At BS, the 
algorithm cost of weight calculation for a mobile node is very low as it includes basic 
multiplications and addition tasks. (Equation (4), (5) and (6)). The time cost to compute the 
weight of mobile node(s) at any Ith scheduling iteration is O(N), where N is the number of 
mobile nodes at any Ith iteration that sends 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 packet to BS.  At mobile node(s), the 
main computation includes sensing and processing of 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 and 𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒 packets.  

6. Conclusion 
It is very challenging to collect smartphone sensor data when user mobility is dynamic and 
heterogeneous. In this work, a weighted adaptive opportunistic scheduling framework is 
proposed for collecting sensor data from smartphones required by applications. The 
scheduling duration is adaptive and varies according to the number of mobile nodes available 
in the range of the 𝐵𝐵𝐵𝐵. Also, the schedule duration has an upper limit to avoid long scheduling 
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delays that can lead to missing high-priority sensor data. The simulation results under a 
heterogeneous mobility scenario (the two main mobility modes of smartphone users are 
combined) show that the proposed scheduling framework, which comprehensively considers 
both mobility and application parameters, can achieve higher data collection performance than 
other frameworks. Since the simulated results demonstrate the effectiveness of the proposed 
framework, it will be extended in the future to implement in real-time. The real-time 
applicability of the proposed scheduling approach involves the implementation of two 
co-operative network protocols running on the base station and on smartphones, respectively. 
Also, the proposed scheduling framework will be extended to consider more realistic scenarios 
that include real mobility traces, geographical obstacles, interference effects, and 
consideration of energy consumption. 
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