• 제목/요약/키워드: Warped Product

검색결과 89건 처리시간 0.023초

NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS ON SEMI-RIEMANNIAN MANIFOLDS

  • Jung, Yoon-Tae;Kim, Yun-Jeong
    • 대한수학회보
    • /
    • 제37권2호
    • /
    • pp.317-336
    • /
    • 2000
  • In this paper, when N is a compact Riemannian manifold, we discuss the method of using warped products to construct timelike or null future (or past) complete Lorentzian metrics on $M=(-{\infty},{\;}\infty){\;}{\times}f^N$ with specific scalar curvatures.

  • PDF

STATIC AND RELATED CRITICAL SPACES WITH HARMONIC CURVATURE AND THREE RICCI EIGENVALUES

  • Kim, Jongsu
    • 대한수학회지
    • /
    • 제57권6호
    • /
    • pp.1435-1449
    • /
    • 2020
  • In this article we make a local classification of n-dimensional Riemannian manifolds (M, g) with harmonic curvature and less than four Ricci eigenvalues which admit a smooth non constant solution f to the following equation $$(1)\hspace{20}{\nabla}df=f(r-{\frac{R}{n-1}}g)+x{\cdot} r+y(R)g,$$ where ∇ is the Levi-Civita connection of g, r is the Ricci tensor of g, x is a constant and y(R) a function of the scalar curvature R. Indeed, we showed that, in a neighborhood V of each point in some open dense subset of M, either (i) or (ii) below holds; (i) (V, g, f + x) is a static space and isometric to a domain in the Riemannian product of an Einstein manifold N and a static space (W, gW, f + x), where gW is a warped product metric of an interval and an Einstein manifold. (ii) (V, g) is isometric to a domain in the warped product of an interval and an Einstein manifold. For the proof we use eigenvalue analysis based on the Codazzi tensor properties of the Ricci tensor.

PARTIAL DIFFERENTIAL EQUATIONS AND SCALAR CURVATURE ON SEMIRIEMANNIAN MANIFOLDS(I)

  • Jung, Yoon-Tae;Kim, Yun-Jeong;Lee, Soo-Young;Shin, Cheol-Guen
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제5권2호
    • /
    • pp.115-122
    • /
    • 1998
  • In this paper, when N is a compact Riemannian manifold, we discuss the method of using warped products to construct timelike or null future(or past) complete Lorentzian metrics on $M{\;}={\;}[a,{\;}{\infty}){\times}_f{\;}N$ with specific scalar curvatures.

  • PDF

SOME DOUBLY-WARPED PRODUCT GRADIENT RICCI SOLITONS

  • Kim, Jongsu
    • 대한수학회논문집
    • /
    • 제31권3호
    • /
    • pp.625-635
    • /
    • 2016
  • In this paper, we study certain doubly-warped products which admit gradient Ricci solitons with harmonic Weyl curvature and non-constant soliton function. The metric is of the form $g=dx^2_1+p(x_1)^2dx^2_2+h(x_1)^2\;{\tilde{g}}$ on ${\mathbb{R}}^2{\times}N$, where $x_1$, $x_2$ are the local coordinates on ${\mathbb{R}}^2$ and ${\tilde{g}}$ is an Einstein metric on the manifold N. We obtained a full description of all the possible local gradient Ricci solitons.

PARTIAL DIFFERENTIAL EQUATIONS AND SCALAR CURVATURE ON SEMIRIEMANNIAN MANIFOLDS (II)

  • Jung, Yoon-Tae;Kim, Yun-Jeong;Lee, Soo-Young;Shin, Cheol-Guen
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제6권2호
    • /
    • pp.95-101
    • /
    • 1999
  • In this paper, when N is a compact Riemannian manifold, we discuss the method of using warped products to construct timelike or null future complete Lorentzian metrics on $M{\;}={\;}[\alpha,\infty){\times}_f{\;}N$ with specific scalar curvatures.

  • PDF

CONFORMAL DEFORMATION ON A SEMI-RIEMANNIAN MANIFOLD (II)

  • Jung, Yoon-Tae;Lee, Soo-Young;Shin, Mi-Hyun
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제10권2호
    • /
    • pp.119-126
    • /
    • 2003
  • In this paper, when N is a compact Riemannian manifold, we considered the positive time solution to equation $\Box_gu(t,x)-c_nu(t,x)+c_nu(t,x)^{(n+3)/(n-1)}$ on M =$(-{\infty},+{\infty})\;{\times}_f\;N$, where $c_n$ =(n-1)/4n and $\Box_{g}$ is the d'Alembertian for a Lorentzian warped manifold.

  • PDF

RIGIDITY AND NONEXISTENCE OF RIEMANNIAN IMMERSIONS IN SEMI-RIEMANNIAN WARPED PRODUCTS VIA PARABOLICITY

  • Railane Antonia;Henrique F. de Lima;Marcio S. Santos
    • 대한수학회지
    • /
    • 제61권1호
    • /
    • pp.41-63
    • /
    • 2024
  • In this paper, we study complete Riemannian immersions into a semi-Riemannian warped product obeying suitable curvature constraints. Under appropriate differential inequalities involving higher order mean curvatures, we establish rigidity and nonexistence results concerning these immersions. Applications to the cases that the ambient space is either an Einstein manifold, a steady state type spacetime or a pseudo-hyperbolic space are given, and a particular investigation of entire graphs constructed over the fiber of the ambient space is also made. Our approach is based on a parabolicity criterion related to a linearized differential operator which is a divergence-type operator and can be regarded as a natural extension of the standard Laplacian.

THE BFK-GLUING FORMULA FOR ZETA-DETERMINANTS AND THE VALUE OF RELATIVE ZETA FUNCTIONS AT ZERO

  • Lee, Yoon-Weon
    • 대한수학회지
    • /
    • 제45권5호
    • /
    • pp.1255-1274
    • /
    • 2008
  • The purpose of this paper is to discuss the constant term appearing in the BFK-gluing formula for the zeta-determinants of Laplacians on a complete Riemannian manifold when the warped product metric is given on a collar neighborhood of a cutting compact hypersurface. If the dimension of a hypersurface is odd, generally this constant is known to be zero. In this paper we describe this constant by using the heat kernel asymptotics and compute it explicitly when the dimension of a hypersurface is 2 and 4. As a byproduct we obtain some results for the value of relative zeta functions at s=0.