J. Korea Soc. Math. Educ. Ser. B: Pure Appl. Math. ISSN 1226-0657
Volume 10, Number 2 (May 2003), Pages 119-126

CONFORMAL DEFORMATION ON
A SEMI-RIEMANNIAN MANIFOLD (II)

YOON-TAE JUNG, S0O-YOUNG LEE, AND MI-HYUN SHIN

ABSTRACT. In this paper, when N is a compact Riemannian manifold, we consid-
ered the positive time solution to equation Ogu(t, ) —cnu(t, ) +cnu(t, z)(n+3/(n-1)
on M = (—o0,+00) X5 N, where ¢, = (n — 1)/4n and O, is the d’Alembertian for
a Lorentzian warped manifold.

1. INTRODUCTION

In a recent study, Leung [5, 6] has studied the problem of scalar curvature func-
tions on Riemannian warped product manifolds and obtained partial results about
the existence and nonexistence of Riemannian warped metric with some prescribed
scalar curvature function. He has studied the uniqueness of a positive solution to

equation
(1.1) Ag u(T) + dau(z) = dnu(x)%-%,

where A, is the Laplacian operator for an n-dimensional Riemannian manifold
(N,g,) and d,, = 4—(7‘71%215. Equation (1.1) is derived from the conformal deformation
of Riemannian metric (¢f. Aviles & McOwen [1]; Kazdan & Warner {4]).

Similarly, let (IV, g,) be a compact Riemannian n-dimensional manifold with con-
stant scalar curvature. We consider the (n+ 1)-dimensional Lorentzian warped man-
ifold M = (—00,00) X s N with the metric g = —dt? + f(t)?g,, where f is a positive
function on [a, o). Let u(t, z) be a positive smooth function on M and let g have a
constant scalar curvature equal to +1.
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If the conformal metric g. = u(t,2)*¥™ Vg also has constant scalar curvature
equal to +1, then u(¢,2) satisfies equation

(1.2) Dgu(t, z) — cpu(t, ) + cpult, x)%-L? =0,

where ¢, = 34_71 and [l is the d’Alembertian for a Lorentzian warped manifold
M = (—o00,00) x¢ N.

In this paper, we study the uniqueness of positive solution to equation (1.2).
Leung [5, 6] considered the scalar curvature of some Riemannian warped product
and its conformal deformation of warped product metric. And also in Ehrlich, Jung
& Kim [3], authors considered the existence of a nonconstant warping function on a
Lorentzian warped product manifold such that the resulting warped product metric
produces the constant scalar curvature when the fiber manifold has the constant
scalar curvature. Indeed, in Ehrlich, Jung & Kim (3|, authors proved that when the
fiber manifold has the constant scalar curvature, then there is no obstruction of the
existence of Lorentzian warped metric with constant scalar equal to +1. So we may
assume that the Lorentzian warped product metric g has the constant scalar equal
to +1.

2. MAIN RESULTS

In this section, we let (N, g,) be a compact Riemannian n-dimensional manifold
with n > 3 and without boundary. Then Beem, Ehrlich & Powell [2, Theorem 5.4]

implies the following proposition.

Proposition 1. Let M = (-00,00) Xy N have a Lorentzian warped product metric
9= —dt® + f(t)290'

Then the d’Alembertian U, is given by

02 '(t) 0 1

——i—nf()—-i-—QAz,

ot f@)y ot f(v)

where A is the Laplacian on fiber manifold N.

O, =—

By Proposition 1, Equation (1.2) is changed into the following equation

2u nf u(t, i3
(2.1) 9 8(tt2’ 2) + ]{(t()t) 9 f?tt, )_f(1t)2 Azu(t,m)—l—cnu(t,a:)—cnu(t,z)n_i_l = 0.
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A positive solution to Equation (1.2) or Equation (2.1) is said to be nonspacelike
(timelike or null) complete if the conformal metric g. = u¥ (™ Vg is a nonspacelike
(timelike or null) complete Lorentzian metric on M.

In this section, we discuss whether the nonspacelike complete positive solution
of Equation (2.1) is unique. By Powell [8, Lemma 2 and Theorem 5] and Beem,
Ehrlich & Powell [2, Theorem 4.1], we have the following proposition.

Proposition 2. Let M = (~00,00) x5 N have a Lorentzian warped product metric
g = —dt?+ f(t)%g,. Then all future directed timelike (resp. null) geodesics are future
complete if and only if for some t, € (—o0,00),

»__f) dt =oco (resp. ” f(t)dt = 00).

t, 1+ f(t)? tg

Similarly, all past directed timelike (resp. null) geodesics are past complete if and

only if for some t, € (—o0,00),

t to
~ —-———\/1—1@—])(@& =oo (resp. /_oo f(t)dt = c0).

If u(t,z) is a positive function with only time- variable ¢, then Equation (2.1)

becomes
" nf'(t) o\ _ o3
(2.2) W) + S () -cn(u t) u(t)).

Lemma 3. Let u(t) be a solution of Equation (2.2) and u(a) = 1 for some a €
(—00,00). We have four cases:

i) If there exists t1 > a such that u(ty) > 1 and u/(t1) > 0, then
u'(t) >0 for all t > t5.

i1) If there exists t2 < a such that u(tz) > 1 and v/(t2) < 0, then
u/'(t) < 0 for all t < to.

iii) If there is a point t3 such that u(t3) < 1 and u'(t3) <0, then
U (t) <0 for all t > t3.

iv) If there exists t4 < a such that u(ts) <1 and u'(t4) > 0, then

u'(t) > 0 for all t < t4.
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Proof. For case i), suppose not. Then there exists a point s; > a such that u(s;) > 1,
v/(s1) = 0 and u”(s1) < 0, but Equation (2.2) shows that this is not possible. For
the other cases, they are similar with the case i). O

The proof of following theorem is similar with that of Leung [7, Theorem 4.9].

Theorem 4. Let u(t) be a positive solution of Equation (2.2). Assume that there
exist positive constants t, and C, such that

f'(t)
f@®)
Then u(t) is bounded from above.

‘ < C, for all |t| > t,.

Proof. From Equation (2.2) we have
ny, Y ntd
(2.3) %—n—l = Cn (’u,n—l —_ u) .
Let x € C3°((—00,00)) be a cut-off function. Multiplying both sides of Equation
(2.3) by x™*1u and then using integration by parts we obtain

o) o0 Xn-Hu / oo 2n42
(2.4) cn/ X" uldt —/ (f™u) ( I > dt = cn/ iy =
—0 —00 —00
We have

Xn+1 u
~(mal) (K2 ) = ok D =
Applying the Cauchy inequality we get

1 1
4n+DMW%w=—2Cj%x%'“w)(viv¥w)

n+12 1
S( 5 ) Xn 1u2lel2+§Xn+llu/12

it (308 (0%

n_n+1 f n+1y,,/|2
et (5) v e

i
2

and

IA

Together with Equation (2.4), we obtain

00 ! 2 o)
ntly,2 f ntly2 g (n+1) / n—1,2(, /2
en [ X+ 2/_w<f> Wt T X
2n+t2
>cn/ Lyn= 1dt.
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Applying Young’s inequality and using the bound |=§} < C,, we have
e o]

(2.5) Cn/ Xn+1u2nﬂ_12-dt S CI/ (lxl‘n+1 +Xn+1)dt,

—00 —00

where C' is a positive constant. Let x > 0 on (—o0, 00),

_J0 on (~o0,—r=3]U[r + 3,00),
=11 on[~r—2,—r~1Ulr+1,r+2

with r > t,, and [x/| < 1. From Equation (2.5) we have
=1 snpo T2 40
/ wmIT dt -+-/ untdt < O
—-r—2 r+1

for all r > t,, where C” is a constant independent on r. Therefore u is bounded

from above. O

Theorem 5. Let (M,g) be a complete Lorentzian manifold with scalar curvature
equal to 1. Let u be a positive smooth solution to Equation (1.2) on (M,g) with
g = —dt? + f2(t)dz?® such that the conformal metric g. = u*™Vg is a (future
and past) complete Lorentzian metric with scalar curvature equal to 1. Assume that
limy 100 f(t) = 00 and there exist positive constants t, and C, such that

f’(t)l

< C, forall |t| >t,.

f(t) 0 l l 0

If u(t, z) is a positive function with only time-variable t, then u(t) =1 on M.

Proof. If w = wu(t) is a solution of Equation (2.2), then, by Theorem 4, u(t) is
bounded from above. Suppose that there exists a point t; € (—o0,00) such that
u(t1) > 1. Then, by Omori-Yau maximum principle (c¢f. Ratto, Rigoli & Setti [9]),
there exists a sequence {t;} such that

1
and u”(t) < -

ol R

lim u(tx) = sup wu(t), |u'(ty)| <
k—oo t€(—00,00)

Since SuPse(—oo,00) U(t) > 1, there exist a number ¢ > 0 and K such that

Cn (u(tk)z_ﬁ - u(tk)) > ¢ for all k > K.

This is a contradiction to Equation (2.2), so u(t) < 1.

Suppose that there exists a point ¢t € (—00, 00) such that u(t2) < 1. Assume that
u(t) > c for all |t| > t,, where c € (0,1) is a constant. Then we can find a sequence
t;, and a positive constant § > 0 such that u(t}) > 1 —46 for all k, limg_,00 v (tx) = 0
and u”(tx) > 0. But this contradicts Equation (2.2). Therefore lim; 400 u(t) = 0
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and we must have u/(t3) < 0 and u/(t4) > 0 for positive large t3 and negative large
t4. The proof of Lemma 3 implies that we have u/(¢) < 0 for all ¢ > t3 and «/(t) > 0
for all t < t4. We consider two cases: Future case and past case.
i) (Future case) There exist positive constants t' > t3 and C > 0 such that for
t > t' we have
n+3

(Y ) = eaf™(0) (0 - ult)) < ~CPEue).
Integrating from ¢’ to ¢t > t’ we have
fr' () < frE(E) - C ; fH(s)u(s)ds < —Cu(t)/t/ f*(s)ds,

as ¢’ < 0. Therefore

u(t) [} f(s)ds
(2.6) ) < —C—th(t)——.

Using the bound *%' < C, we have (f)' < C,nf™ An integration gives
¢
) - ) < Con [ 1(5)ds.
tl
As limy_oo f(t) = 00, if t is large we have —%—f"(t) <C, ftf f™(s)ds, that is,

Jp f(s)ds _
IEOR

for all ¢ large and for some positive constant ¢’. Equations (2.6) and (2.7) give

(2.7)

u(t) < Ce~ for all t large enough, where C is a positive constant. Thus the
conformal metric g, = u/(n=1) g cannot be future complete. It is a contradiction.

ii) (Past case) There exist positive constants t” < t4 and C’ > 0 such that for
t < t” we have

(Y (8) = eaf™((u™1 () — u(t)) < ~C'F @ult)

Integrating from ¢(< t”) to t” we have

" '
— M) < — W)~ C | f(s)uls)ds < ~Clu(t) [ f(s)ds,

t t

as u' > 0. Therefore

(2.8) w'(t) C'ft_t”_fn_(s_)f'

u(t) ~ ()
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Using the bound J;TI > —C, we have (f*)’ > —C, nf". Integrating from t (< t") to
t" gives
tl/

r " = fr@) = -Con [ f(s)ds.

t

As limy__o f(t) = o0, if t is negative large, we have —3 f™(t) > —C, ftt” ™ (s)ds,
that is,

Y fn(s)ds
(2.9) ————fn 0

for all ¢t negative large and for some positive constant ¢;. Equations (2.8) and

<c

(2.9) give u(t) < Cqe®? for all ¢t negative large enough, where C, is a positive
constant. Thus the conformal metric g, = u¥("1g cannot be past complete. It is
a contradiction.

Hence u =1 on (—o00, 00). O
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