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SOME DOUBLY-WARPED PRODUCT GRADIENT

RICCI SOLITONS

Jongsu Kim

Abstract. In this paper, we study certain doubly-warped products
which admit gradient Ricci solitons with harmonic Weyl curvature and
non-constant soliton function. The metric is of the form g = dx2

1 +

p(x1)2dx2
2 + h(x1)2 g̃ on R

2
× N , where x1, x2 are the local coordinates

on R
2 and g̃ is an Einstein metric on the manifold N . We obtained a full

description of all the possible local gradient Ricci solitons.

1. Introduction

A gradient Ricci soliton consists of a Riemannian manifold (M, g) and a
smooth function f satisfying ∇df = −Rc + λg, where Rc denotes the Ricci
tensor of g and λ is a constant. They are important as singularity models of
the Ricci flow in Hamilton’s theory.

It is very interesting to find non-trivial gradient Ricci solitons. Some collec-
tion of explicit examples have been found and studied; see Chapters 1 and 2 of
[1] and its references.

The goal of this paper is modest: we shall analyze gradient Ricci solitons
of restricted feature. Here we consider (R2 × N, g) where g has harmonic
Weyl curvature and is of the form g = dx2

1 + p(x1)
2dx2

2 + h(x1)
2g̃ in the local

coordinates x1, x2 on R
2, with two functions p, h and g̃ is an Einstein metric

on the manifold N . The motivation for this study is explained in the next
paragraphs.

Ivey in [3] has considered Riemannian metrics of the form g = dx2
1 +

p(x1)
2gSk + h(x1)

2g̃, where gSk is the standard metric on Sk, k ≥ 1 and g̃
is an Einstein metric with positive scalar curvature. By studying phase-plane
trajectories of the soliton ordinary differential equations, he showed that there
exists a complete gradient Ricci soliton metrics of the above form with λ = 0.
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Recently, gradient Ricci solitons with harmonic Weyl curvature became an
interesting theme to study [2, 6]. Now one may need to understand noncom-
pact solitons with λ of any sign. So, the author wanted to understand Ivey’s
examples in the context of harmonic Weyl curvature.

Although we work only in k = 1 case of Ivey’s examples, we treat λ and g̃
with any signs. We note that four dimensional case is already studied in [5],
but our argument here is all-dimension inclusive.

It turns out that, with the condition of harmonic Weyl curvature, a good
analysis is possible. Indeed, after analyzing several cases we could make a full
description of all the possible local gradient Ricci solitons in the main theorem,
Theorem 5.4.

This paper is organized as follows. In Section 2 we mainly compute the
curvature components of the soliton metric with harmonic Weyl curvature. In
Section 3 we characterize four possible simple cases arising from the soliton

equation. They are expressed as a linear relation in terms of p
′

p
and h

′

h
. In

Section 4 we reduce the general case to three quadratic cases in Lemma 4.2. In
the last Section 5, we analyze the remaining three cases and summarize them
in Theorem 5.4.

2. Analysis of the soliton metric with harmonic Weyl curvature

We recall one formula for a gradient Ricci soliton with harmonic Weyl
curvature from [2]. For the Riemannian curvature tensor R(X,Y, Z,W ) =
〈∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z,W 〉;

Lemma 2.1. For a gradient Ricci soliton (M, g, f) with δW = 0, i.e., har-

monic Weyl curvature, we have;

R(X,Y, Z,∇f) =
1

n− 1
R(X,∇f)g(Y, Z)−

1

n− 1
R(Y,∇f)g(X,Z)

=
1

2(n− 1)
dR(X)g(Y, Z)−

1

2(n− 1)
dR(Y )g(X,Z).

We shall consider a gradient Ricci soliton with δW = 0 such that its metric
g on R

2 ×Nn−2, n ≥ 4, can be written in local coordinates x1, . . . , xn as

(1) g = dx1
2 + p(x1)

2dx2
2 + h(x1)

2g̃ with |∇f | 6= 0,

where x1, x2 are the coordinates for R2 and x3, . . . , xn are local coordinates for
N and g̃ is an Einstein metric on N . Moreover, we shall consider the soliton
function f to be a function of x1 only.

This assumption of f = f(x1) may seem too restricted. However, we believe
that f should be a function of x1 only, if δW = 0.

We first compute the Levi-Civita connection of g in the coordinates. We
write ∂i :=

∂
∂xi

and denote the derivative in x1 by prime, e.g. p
′

:= dp

dx1
. For
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i, j ∈ {3, . . . , n},

(2)

∇∂1∂1 = 0, ∇∂1∂2 =
p

′

p
∂2, ∇∂1∂j =

h
′

h
∂j ,

∇∂2∂2 = −pp
′

∂1, ∇∂j
∂2 = ∇∂2∂j = 0,

∇∂i
∂j = ∇g̃

∂i
∂j − hh

′

g̃(∂i, ∂j)∂1.

From (2), one can compute the curvature components of g in terms of those
of g̃ and (derivatives of) p and h. We prefer to write them in terms of a local
orthonormal frame field Ei such that E1 = ∂1, E2 = 1

p
∂2 and for j ≥ 3,

Ej = 1
h
ej , where ej ’s form a local orthonormal frame field for g̃. As g̃ is

Einstein, the Ricci tensor of g̃ satisfies Ricg̃ = Rg̃

n−2 g̃, where Rg̃ is the scalar

curvature of g̃. We shall see in (5) that Ei’s are Ricci-eigen vector fields.
We shall write the Ricci components Rij := R(Ei, Ej), and curvature com-

ponents Rijkl := R(Ei, Ej , Ek, El). For later convenience we set a = p
′

p
and

b = h
′

h
.

We have

R1221 = −
p

′′

p
, R1jj1 = −

h
′′

h
for j ∈ {3, . . . , n}.

By Lemma 2.1, for j = 2, . . . , n,

(3) R1jj1|∇f | =
1

n− 1
R11|∇f | =

1

2(n− 1)
R

′

.

This implies that

(4) R1221 = · · · = R1nn1 and
p

′′

p
=

h
′′

h
= a

′

+ a2 = b
′

+ b2.

Ricci components are as follows. For i ∈ {3, . . . , n},

(5)

R11 = −(n− 1)
h

′′

h
= −(n− 1)(a

′

+ a2),

R22 = −
p

′′

p
− (n− 2)

p
′

p

h
′

h
= −a

′

− a2 − (n− 2)ab,

Rii = −
h

′′

h
−

p
′

p

h
′

h
− (n− 3)

h
′2

h2
+

Rg̃

(n− 2)h2

= −b
′

− (n− 2)b2 − ab+
Rg̃

(n− 2)h2
,

Rij = 0, i 6= j

The scalar curvature equals

(6) R = −(2n− 2)(a
′

+ a2)− (n− 2){2ab+ (n− 3)b2}+
Rg̃

h2
.



628 J. KIM

3. Four special cases

From (2), we can deduce

∇E1E1 = 0, ∇E2E1 =
p

′

p
E2, ∇E2E2 = −

p
′

p
E1 and,

for i = 2, . . . , n, ∇E1Ei = 0, ∇Ei
E1 = h

′

h
Ei, ∇E2Ei = ∇Ei

E2 = 0. And

〈∇Ej
Ej , E1〉 = −h

′

h
, j ≥ 3, 〈∇Ei

Ej , E1〉 = 0 for distinct i, j ≥ 3.
From these, we can write the soliton equation

∇df(Ei, Ej) = −(Rc− λg)(Ei, Ej)

as below, using (5) and the definition ∇df(Ei, Ej) = EiEj(f)− (∇Ei
Ej)f .

For j ∈ {3, . . . , n},

(7) f
′′

=
p

′′

p
+ (n− 2)

h
′′

h
+ λ = (n− 1)(a

′

+ a2) + λ.

(8) f
′

a = f
′ p

′

p
= a

′

+ a2 + (n− 2)ab+ λ.

(9) f
′

b = f
′ h

′

h
= b

′

+ (n− 2)b2 + ab−
Rg̃

(n− 2)h2
+ λ.

Remark 3.1. At this point we note the real analyticity of most functions and
tensors involved. In fact, as g and f are real analytic (in harmonic coordinates)

[4], so is |∇f | where ∇f 6= 0. Since R
′

= dR(E1) = dR( ∇f

|∇f |
) is real analytic, so

is R(E1, Ej , Ej , E1) from (3). As −b
′

− b2 = R(E1, E3, E3, E1) is real analytic,

so is b = h
′

h
, as well as a = p

′

p
. And h and p are real analytic.

This will help our argument; when we analyze an equation of the type P1 ·
P2 = 0 (identically) on a domain where Pi is each a polynomial in a, b, then
P1 = 0 or P2 = 0.

To study the soliton metric g of (1) with δW = 0, we first consider four
special cases: when a = 0, b = 0, a = b or a = −b on a domain.

Lemma 3.2. For the soliton metric g of (1) with δW = 0, if it satisfies a = 0
(identically) on a domain, then we have λ = 0 and g is locally isometric to one

of the following.

(i) a domain in R
2 × (N, g̃) with g = dx2

1 + dx2
2 + g̃, where g̃ is a Ricci flat

metric. And f is linear.

(ii) a domain in R
2 × (N, g̃) with g = dx2

1 + dx2
2 + x2

1g̃ where g̃ is a positive

Einstein metric and f constant.

Proof. As a vanishes, λ = 0 from (8). As p is constant, say p = p0 > 0,

we have p
′′

p
= h

′′

h
= 0. So, h is a linear function. Shifting by a constant if

necessary (x1 7→ x1+constant), we may set h(x1) = a0 or h(x1) = cx1 for some
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non-zero constant a0, c. If h(x1) = a0, then from (9) we get Rg̃ = 0. Then

g = dx2
1 + dx2

2 + g̃, where g̃ is Ricci flat. And f
′′

= 0 from (7).

If h(x1) = cx1, c 6= 0, then from (7), f
′′

= 0. From (9) we get f
′

(x1) =
1
x1
(n− 3− Rg̃

(n−2)c2 ). So, f
′

= 0 and c2 = Rg̃

(n−2)(n−3) > 0.

So, g = dx2
1 + dx2

2 + x2
1g̃ with g̃ positive Einstein metric and f is a constant.

�

Remark 3.3. In the statement of Lemma 3.2, x1 may be a shift of the original
x1 in (1) by a constant. Likewise, g̃ may be a constant multiple of the original
g̃ in (1). In other words, x1 and g̃ in the statement already absorbed some
constant. In later lemmas, these will constantly happen. And x2 can also be a
constant multiple of the original x2.

The next is when b = 0.

Lemma 3.4. For the soliton metric g of (1) with δW = 0, if b = 0, but

a is never zero on a domain, then g is locally isometric to a domain in R
2 ×

(Nn−2, g̃) with g = dx2
1+x2

1dx
2
2+g̃, where g̃ is an Einstein metric with Rg̃

n−2 = λ

on N . And f = λ
2x

2
1 + C1 for a constant C1.

Proof. As h is constant, say h = h0 > 0, we have p
′′

p
= h

′′

h
= 0. So, p is a

linear function. As a is never zero, by shifting x1 by a constant, we may set
p(x1) = cx1, for some non-zero constant c.

From (8), f
′

= λx1. We get f(x1) = 1
2λx

2
1 + C1. From (9), we have

Rg̃

(n−2)h2
0
= λ. And the metric g becomes g = dx1

2 + x2
1dx

2
2 + g̃, where g̃ is an

Einstein metric with Rg̃

(n−2) = λ. This proves the lemma. �

Lemma 3.5. For the soliton metric g of (1) with δW = 0, if the function

a− b = 0 on a domain, then the metric becomes g = dx2
1 + h2(dx2

2 + g̃) where

g̃ is Ricci flat and f, h satisfy

f
′′

= (n− 1)
h

′′

h
+ λ,

f
′ h

′

h
=

h
′′

h
+ (n− 2)(

h
′

h
)2 + λ.

Proof. Suppose a− b = 0, i.e., p
′

p
= h

′

h
. Then p = ch for some constant c > 0.

Comparing (8) and (9), Rg̃ = 0. By absorbing the constant c to dx2, the metric
becomes g = dx2

1+h2(dx2
2 + g̃) where g̃ is Ricci flat. And f, h satisfies the next

two equations;

f
′′

= (n− 1)
h

′′

h
+ λ,

f
′ h

′

h
=

h
′′

h
+ (n− 2)(

h
′

h
)2 + λ.

�
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Lemma 3.6. For the soliton metric g of (1) with δW = 0, if a + b = 0 on a

domain, then we have λ = 0 and g is locally isometric to a domain in R
2×(N, g̃)

with g = dx2
1 + dx2

2 + g̃, where g̃ is a Ricci flat metric. And f is linear.

Proof. Suppose a + b = 0, i.e., p
′

p
= −h

′

h
. By differentiating p

′′

p
− (p

′

p
)2 =

−h
′′

h
+(h

′

h
)2. Then by p

′′

p
= h

′′

h
, we have −h

′′

h
+(h

′

h
)2 = 0. So, b = h

′

h
= C for

a constant C. So, h = che
Cx1 for a constant ch > 0. And a = −C.

When C 6= 0, from (8) and (9) we have Rg̃ = λ = 0 and f
′

is a constant.
Then (7) becomes 0 = (n− 1)C2, which is a contradiction.

If C = 0, then h and p are both constants. From (7)∼(9), λ = Rg̃ = f
′′

= 0.
And g = dx2

1 + dx2
2 + g̃ with Ricci-flat metric g̃. �

4. Developing for general cases

In the previous section four simple cases of linear relations are understood.
here we develop for all possible cases. It turns out that we only need to study
at most quadratic cases.

For simplicity we shall denote X := Rg̃

(n−2)h2 . We note that X
′

= −2bX .

From (8) and (9) we have b{a
′

+a2+(n−2)ab+λ} = a{b
′

+(n−2)b2+ab−X+λ}.
Rearranging this, using (4), we get;

(10) (b − a)a
′

+ a(b2 − a2) + (b − a)λ = −aX.

Here we assume that a − b is never zero on a domain. Taking (8)-(9), we
get;

(11)
f

′

(a− b) = a
′

+ a2 + (n− 2)ab− b
′

− (n− 2)b2 − ab+X

= (n− 3)ab− (n− 3)b2 +X.

Differentiating (11) and using (4),

f
′′

(a− b) + f
′

(a− b)
′

= (n− 3)(a
′

b+ ab
′

)− 2(n− 3)bb
′

− 2bX

= (n− 3)a
′

b+ (n− 3)(a− 2b)(a
′

− b2 + a2)− 2bX

= a
′

(a− b)(n− 3) + (n− 3)(a− 2b)(−b2 + a2)− 2bX.

Differentiating f
′

(a− b) and using (7), (4) and (11),

f
′′

(a− b) + f
′

(a− b)
′

= {(n− 1)(a
′

+ a2) + λ}(a− b)− (a+ b){(n− 3)ab− (n− 3)b2 +X}.

Equating the two expressions, we have

a
′

(a− b)(n− 3) + (n− 3)(a− 2b)(−b2 + a2)− 2bX

= {(n− 1)(a
′

+ a2) + λ}(a− b)− (a+ b){(n− 3)ab− (n− 3)b2 +X}.
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The above simplifies to

−2a
′

(a− b) + (b− a)λ+ 2a2(b− a) + (a− b)b2(3− n) = (b − a)X.

From this last equation, we may state:

Lemma 4.1. For the soliton metric g of (1) with δW = 0, if a − b is never

zero on a domain, the following holds.

−2a
′

− λ− 2a2 + b2(3 − n) = −X.(12)

Removing X from (10) and (12),

−(a+ b)a
′

= a3 + (n− 2)ab2 + λb.(13)

Removing a
′

from (10) and (12),

(a− b){2ab− (n− 3)b2 + λ} = (a+ b)X.(14)

Now we can show:

Lemma 4.2. For the soliton metric g of (1) with δW = 0, if b(a − b){2ab −
(n− 3)b2 + λ} is never zero on a domain, the following holds.

(15) {λ+ (n− 1)ab}{λ− 2a2 + (n− 3)ab} = 0.

Proof. From the hypothesis that (a − b){2ab − (n− 3)b2 + λ} is never zero,
(a+b)X is also not zero and we may take the natural log of (14) and differentiate
it;

−a− b+
2a

′

b+ 2ab
′

− 2(n− 3)bb
′

2ab− (n− 3)b2 + λ
=

a
′

+ b
′

a+ b
− 2b.

Then,

{a− (n− 4)b}a
′

+ {a− (n− 3)b}(a2 − b2)

2ab− (n− 3)b2 + λ
=

a
′

+ a2 − b2

a+ b
.

Arranging terms, we obtain;

(16) −a
′

{a2 + b2 + (3− n)ab− λ} = (a2 − b2){a2 − (n− 2)ab− λ}.

We remove a
′

from (13) and (16) to get;

(a+ b)(a2 − b2){a2 − (n− 2)ab− λ}

= {a3 + (n− 2)ab2 + λb}{a2 + b2 + (3− n)ab− λ}.

After simplification, we get (15). �
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5. Quadratic cases

From Lemma 4.2 and results of Section 3, we only need to understand three
quadratic cases;

2ab− (n− 3)b2 + λ = 0,(17)

λ+ (n− 1)ab = 0,(18)

λ− 2a2 + (n− 3)ab = 0.(19)

When (17) holds, from (14) we may have either a+ b ≡ 0 or X ≡ 0. Lemma
3.6 covers a+ b ≡ 0. Now we prove:

Lemma 5.1. For the soliton metric g of (1) with δW = 0, assume that a, b,
a− b and a+ b are never zero on a domain. Then 2ab− (n− 3)b2 + λ and X
cannot vanish together.

Proof. We assume that 2ab − (n− 3)b2 + λ = X = 0. From (6), we get

R = −(2n− 2)(a
′

+ a2)− (n− 2){4ab+ λ}.

We shall use δW = 0; ∇kRij − ∇jRik = − Rj

2n−2gki +
Rk

2n−2gij in {Ei}. In

particular, using (5),

0 = ∇1R22 −∇2R12 −
R

′

2n− 2

= ∇1(R22) +R(∇E2E1, E2) +R(∇E2E2, E1)−
R

′

2n− 2

= (R22)
′

+ aR22 − aR11 −
R

′

2n− 2
.

= −{a
′

+ a2 + (n− 2)ab}
′

−
R

′

2n− 2
− a{a

′

+ a2 + (n− 2)ab}

+ (n− 1)a(a
′

+ a2).

= (4 − n)(ab)
′

− (n− 2)a2b + (n− 2)a(a
′

+ a2)

= (4 − n){a
′

b+ a(a
′

+ a2 − b2)} − (n− 2)a2b+ (n− 2)a(a
′

+ a2)

= {a
′

+ a(a− b)}{2a+ (4− n)b}.

We should treat two subcases a
′

+ a(a − b) = 0 or 2a + (4 − n)b = 0. We
shall show these cannot occur.

When a
′

+ a(a − b) = 0, we get p
′′

= p
′

h
′

h
. Then p

′

h
= c1, a constant.

From p
′′

p
= h

′′

h
, we also get h

′

p
= c2, a constant. So, ab = p

′

h
′

ph
= c1c2. And

2ab− (n− 3)b2 + λ = 0 gives (n− 3)b2 = 2c1c2 + λ. b is a constant and so is a

since ab is never zero. Then a
′

+a(a−b) = 0 gives a(a−b) = 0, a contradiction
to the hypothesis.
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When 2a + (4 − n)b = 0, together with 2ab − (n− 3)b2 + λ = 0, we have
b2 = λ ≥ 0. The case of b = 0 is violating the hypothesis. So assume λ > 0.
Then b =

√
λ and a = n−4

2

√
λ. But this would not satisfy (12). �

Next for the case (18):

Lemma 5.2. For the soliton metric g of (1) with δW = 0, assume that a, b,
a− b and a+ b are never zero and that λ+ (n− 1)ab = 0 on a domain, then f
is constant and g is one of the following.

(i) g = dx2
1 + cos2(

√
λ

n−1x1)dx
2
2 + sin2(

√
λ

n−1x1)g̃ with λ > 0 and a positive

Einstein metric g̃ and Ricg̃ = (n−3)λ
n−1 g̃.

(ii) g = dx2
1 + cosh2(

√
− λ

n−1x1)dx
2
2 + sinh2(

√
− λ

n−1x1)g̃ with λ < 0 and a

positive Einstein metric g̃ and Ricg̃ = − (n−3)λ
n−1 g̃.

Proof. As a, b are never zero, we have λ 6= 0 from λ+(n− 1)ab = 0. From (12)
we have

(20) −2
h

′′

h
− (n− 3)

(h
′

)2

h2
+

Rg̃

(n− 2)h2
− λ = 0.

From λ + (n− 1)ab = 0, we have 0 = a
′

b + ab
′

= (b
′

− a2 + b2)b + ab
′

=

(a + b){b
′

− b(a − b)}. As a+ b 6= 0, we now have b
′

+ b2 = ab = − λ
(n−1) . We

get h
′′

h
= − λ

n−1 . Due to (20),

−(n− 3)
h

′2

h2
+

Rg̃

(n− 2)h2
=

(n− 3)λ

n− 1
.(21)

From (9), f
′ h

′

h
= h

′′

h
+ p

′

p
h
′

h
+ (n− 3)h

′ 2

h2 − Rg̃

(n−2)h2 + λ = − λ
n−1 − λ

n−1 −
(n−3)λ
n−1 + λ = 0. As b 6= 0, f is a constant.

When λ > 0, the solution of h
′′

h
= − λ

n−1 is h = ch sin(
√

λ
n−1x1 + s0) for

some constants ch and s0. Put it into (21) with setting x :=
√

λ
n−1x1 + s0, we

get

−
(n− 3)λ

n− 1

(1− sin2 x)

sin2 x
+

Rg̃

(n− 2)c2h sin
2 x

=
(n− 3)λ

n− 1
.

This reduces to (n−3)λ
n−1 = Rg̃

(n−2)c2
h

.

From ab = p
′

h
′

ph
= − λ

(n−1) , we get p = cp cos(
√

λ
n−1x1 + s0). Shifting x1 by

a constant, we can write g = dx2
1 + cos2(

√
λ

n−1x1)dx
2
2 + sin2(

√
λ

n−1x1)g̃ with

a positive Einstein metric g̃ and Ricg̃ = (n−3)λ
n−1 g̃. It satisfies (7) and (8).

When λ < 0, h = ch sinh(
√

− λ
n−1x1+s0) for some constants ch and s0. Put

it into (21), we get − (n−3)λ
n−1 = Rg̃

(n−2)c2
h

. And p = cp cosh(
√

− λ
n−1x1+s0). Then
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g = dx2
1 + cosh2(

√
− λ

n−1x1)dx
2
2 + sinh2(

√
− λ

n−1x1)g̃ with a positive Einstein

metric g̃ and Ricg̃ = − (n−3)λ
n−1 g̃. It satisfies (7) and (8). �

For the last case (19):

Lemma 5.3. For the soliton metric g of (1) with δW = 0, assume that a, b, a−b
and a+ b are never zero and that λ− 2a2 + (n− 3)ab = 0 on a domain. Then

g is locally isometric to a domain of Rn with the metric

dx2
1 + x

2(n−3)
n−1

1 dx2
2 + x

4
n−1

1 g̃,

where g̃ is Ricci flat. Also, λ = 0 and f = 2(n−3)
n−1 lnx1 +C2 for a constant C2.

Proof. We put λ = 2a2 − (n− 3)ab into (13) to get;

−a
′

=
a3 + (n− 2)ab2 + λb

a+ b
=

a3 + 2a2b+ ab2

a+ b
= a(a+ b).

So, −a
′

− a2 = ab, i.e., p
′′

h+ p
′

h
′

= 0. Integrating this, we get p
′

h = c1 for a

constant c1. As
h
′′

h
= p

′′

p
, we have h

′′

p+p
′

h
′

= 0, which integrates to h
′

p = c2.

As a = p
′

p
and b = h

′

h
are never zero, c1 and c2 are not zero. So h

′

h
= c2

c1

p
′

p
, i.e.,

b = c2
c1
a. So, 0 = λ− 2a2 + (n− 3)ab = λ+ {−2 + c2

c1
(n− 3)}a2.

If c2
c1

6= 2
n−3 , then a = h

′

h
is a constant, say a = a0 6= 0. Then h =

c3e
a0x1 , c3 > 0. Then p = c5e

−a0x1 , c5 > 0. In this case, we get a + b =
−a0 + a0 = 0, which is contradictory to the hypothesis.

If c2
c1

= 2
n−3 , then λ = 0. From h

′

h
= 2

n−3
p
′

p
, we integrates it to h = c6p

2
n−3 ,

c6 > 0. Then c1 = p
′

h = c6p
2

(n−3) p
′

and p = c7(x1 + c8)
n−3
n−1 . As x1 may

be defined modulo a constant, we may set p = c7x
n−3
n−1

1 and h = c9x
2

n−1

1 . Put

these into (8) and (9), and we get Rg̃ = 0 and f
′

= 2(n−3)
(n−1)x1

. Then f =
2(n−3)
n−1 lnx1 + C2 can be obtained.

So, g is locally isometric to a domain of Rn with the metric dx2
1+x

2(n−3)
n−1

1 dx2
2+

x
4

n−1

1 g̃, where g̃ is Ricci flat. �

We can summarize Lemma 3.2∼Lemma 5.3 with the help of Remark 3.1.

Theorem 5.4. Let (g, f) be a gradient Ricci soliton on M = R
2×Nn−2, n ≥ 4,

with δW = 0 and non-constant f , which can be written in local coordinates

x1, . . . , xn as

(22) g = dx2
1 + p(x1)

2dx2
2 + h(x1)

2g̃,

where g̃ is an Einstein metric of dimension n− 2 on a manifold N . Then it is

locally one of the following:
(i) g = dx2

1 + dx2
2 + g̃, where g̃ is a Ricci flat metric, λ = 0 and f is linear

in x1.
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(ii) g = dx2
1 + dx2

2 + x2
1g̃ where g̃ is a positive Einstein metric, λ = 0 and f

is constant.

(iii) g = dx2
1 + x2

1dx
2
2 + g̃, where g̃ is an Einstein metric with Rg̃

(n−2) = λ.

And f = λ
2x

2
1 + C1 for a constant C1.

(iv) g = dx2
1 + h2(dx2

2 + g̃) where g̃ is Ricci flat. And f, h satisfy

f
′′

= (n− 1)
h

′′

h
+ λ,

f
′ h

′

h
=

h
′′

h
+ (n− 2)(

h
′

h
)2 + λ.

(v) g = dx2
1+cos2(

√
λ

n−1x1)dx
2
2+sin2(

√
λ

n−1x1)g̃ with λ > 0 and a positive

Einstein metric g̃ and Ricg̃ = (n−3)λ
n−1 g̃. f is constant.

(vi) g = dx2
1 + cosh2(

√
− λ

n−1x1)dx
2
2 + sinh2(

√
− λ

n−1x1)g̃ with λ < 0 and a

positive Einstein metric g̃ and Ricg̃ = − (n−3)λ
n−1 g̃. f is constant.

(vii) g = dx2
1 + x

2(n−3)
n−1

1 dx2
2 + x

4
n−1

1 g̃, where g̃ is Ricci flat with λ = 0 and

f = 2(n−3)
n−1 lnx1 + C2 for a constant C2.

Remark 5.5. The converse of Theorem 5.4 holds, although we omit its detailed
computational proof. In fact, it is not hard to check that all the solitons from
(i) through (vii) in Theorem 5.4 satisfy δW = 0, equivalently the equations

∇kRij −∇jRik = − Rj

2n−2gki +
Rk

2n−2gij .
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