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NONLINEAR PARTTIAL DIFFERENTIAL
EQUATIONS ON SEMI-RIEMANNIAN MANIFOLDS

YOON-TAE JUNG AND YUN-JEONG KIM

ABSTRACT. In this paper, when N is a compact Riemannian man-
ifold, we discuss the method of using warped products to construct
timelike or null future(or past) complete Lorentzian metricson M =
(—o00,0) x ¢ N with specific scalar curvatures.

1. Introduction

In a recent study [13, 14], M. C. Leung have studied the problem
of scalar curvature functions on Riemannian warped product mani-
folds and obtained partial results about the existence and nonexistence
of Riemannian warped metric with some prescribed scalar curvature
function. In this paper, we study also the existence and nonexistence
of Lorentzian warped metric with prescribed scalar curvature functions
on some Lorentzian warped product manifolds. The methods of our
proofs are similar to those of [13, 14], but the obtained results are in a
sense very different.

By the results of Kazdan and Warner ([10, 11, 12]), if N is a compact
Riemannian n—manifold without boundary, n > 3, then N belongs to
one of the following three catagories:

(A) A smooth function on N is the scalar curvature of some Rie-
mannian metric on N if and only if the function is negative somewhere.

(B) A Smooth function on N is the scalar curvature of some Rie-
mannian metric on N if and only if the function is either identically
zero or strictly negative somewhere.

Received July 9, 1999.

2000 Mathematics Subject Classification: 53C21, 53C50, 58C35, 58J05.

Key words and phrases: warped product, scalar curvature, upper and lower so-
lution method.

The first author was supported by BSRI-98-1425, the Korean Ministry of Educa-
tion.




Yoon-Tae Jung and Yun-Jeong Kim

(C) Any smooth function on N is the scalar curvature of some Rie-
mannian metric on N.

This completely answers the question of which smooth functions are
scalar curvatures of Riemannian metrics on a compact manifold N.

In [10, 11, 12], Kazdan and Warner also showed that there exists
some obstruction of a Riemannian metric with positive scalar curvature
(or zero scalar curvature) on a compact manifold.

For noncompact Riemannian manifolds, many important works have
been done on the question. of how to determine which smooth func-
tions are scalar curvatures of complete Riemannian metrics on an open
manifold. Results of Gromov and Lawson ([8]) show that some open
manifolds cannot carry complete Riemannian metrics of positive scalar
curvature, for example, weakly enlargeable manifolds. Furthermore,
they show that some open manifolds cannot even admit complete Rie-
mannian metrics with scalar curvatures uniformly positive outside a
compact set and with Ricci curvatures bounded ([8], [15] p. 322).

On the other hand, it is well known that each open manifold of di-
mension bigger than 2 admits a complete Riemannian metric of constant
negative scalar curvature ([5]). It follows from the results of Aviles and
McOwne ([1]) that any bounded negative function on an open mani-
fold of dimension bigger than 2 is the scalar curvature of a complete
Riemannin metric.

In [13, 14], the author considered the scalar curvature of some Rie-
mannian warped product and its conformal deformation of warped
product metric. And also in [7], authors considered the existence of
a nonconstant warping function on a Lorentzian warped product man-
ifold such that the resulting warped product metric produces the con-
stant scalar curvature when the fiber manifold has the constant scalar
curvature.

Ironically, even though there exists some obstruction of positive or
zero scalar curvature on a Riemannian manifold, results of 7], say, The-
orem 3.1, Theorem 3.5 and Theorem 3.7 of [7] show that there exists no
obstruction of positive scalar curvature on a Lorentzian warped prod-
uct manifold, but there may exist some obstruction of negative or zero
scalar curvature.

In this paper, when IV is a compact Riemannian manifold, we dis-
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cuss the method of using warped products to construct timelike or null
future(or past) complete Lorentzian metrics on M = (—00,00) X5 N
with specific scalar curvatures. By making use of the boundary, we can
construct warped products at the ends of M. It is shown that if the fiber
manifold N belongs to class (A) or (B), then M admits a Lorentzian
metric with negative scalar curvature approaching zero near the end
outside a compact set.

2. Fiber manifold in class (A) or (B)

Let (N, g) be a Riemannian manifold of dimension n and let f :
(—00,00) — R™T be a smooth function. The Lorentzian warped product
of N and (—o0, 00) with warping function f is defined to be the product
manifold ((—o0,00) x5 N, ¢’) with

(2.1) g = —dt® + f2(t)g.

Let R(g) be the scalar curvature of (IV, g). Then the scalar curvature
R(t,z) of ¢ is given by the equation

(2.2) R(tz)= }%{R(Q)(x) +2nf(6)f" () +n(n - 1If @)1}
for t € (—00,00) and z € N. (For details, cf. [2], [6] or [7]) If we denote

u(t) = 75 (),

then equation (2.2) can be changed into

(2:3) ;%u”(t) — R(t,z)u(t) + R(g)(z)u(t) "=+ = 0.

In this paper, we assume that the fiber manifold N is nonempty,
connected and a compact Riemannian n—manifold without boundary.
Then, by Theorem 3.1, Theorem 3.5 and Theorem 3.7 in [7], we have
the following proposition.
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PROPOSITION 2.1. If the scalar curvature of the fiber manifold N
is arbitrary constant, then there exists a nonconstant warping function
f(t) on (—o0,00) such that the resulting Lorentzian warped product
metric on (—00,00) X y N produces positive constant scalar curvature.

Proposition 2.1 implies that in Lorentzian warped product there is
no obstruction of metric with positive scalar curvature. However, the
results of [7] show that there may exist some obstruction about the
Lorentzian warped product metric with negative or zero scalar curva-
ture when the fiber manifold has constant scalar curvature.

REMARK 2.2. Theorem 5.5 in [16] implies that all timelike geodesics
are future (resp. past) complete on (—00,+00) X, N if and only if

to 1+4+v 14w
(—00,00) and Remark 2.58 in [3] implies that all null geodesics are

future (resp. past) complete if and only if ft‘:‘x’ vidt = +oo (resp.
ff‘;o vidt = +00) for some ¢ € (—00, %0) (cf. Theorem 4.1 and Remark
4.2 in [4]).

+o0 v % to v %
i) (—) dt = +oo (resp. [ (—) dt = +00) for some ty €

If N admits a Riemannian metric of negative or zero scalar curvature,
then we let u(t) = (co +12)® in (2.3), where ¢ is a positive number and
a € (0,1) is a constant. So we have

dn —2acg + 20(1 — 2a)t?

<
Rbo) S~ (s 002

Therefore, from the above fact, Remark 2.2 implies the following:

THEOREM 2.3. Forn > 3, let M = (—00,00) X sy N be the Lorentzian
warped product (n+ 1)-manifold with N compact n-manifold. Suppose
that N isin class (A ) or ( B), then on M there is a nonspacelike future
geodesically complete Lorentzian metric of negative scalar curvature
outside a compact set.

We note that 2a(1 — 2c:) achieves its maximum value 3 when a = 1.
If R(t,z) is the function of only t-variable, then we have the following
proposition whose proof is similar to that of Lemma 1.8 in [14].
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PROPOSITION 2.4. If R(g) = 0, then there is no positive solution to
equation (2.3) with

4n c1
CZ for t>t t < —to,
nt142 7 o or t<-

where ¢ > 1 and tg are positive constants.

Proof. In case that

R(t) < -

4n c_l_

)< ———-= for t>
R s -T3qi1m t 2 o,
we have the same proof as in [J.].
Assume that
4n c1
<=z < -
R(t) < Tri1E for t< —tg,

with ¢ > 1. Equations (2.3) gives
t2u” + zu <0.

Let
u(t) = (—t)%v(t), t<—to,

where a > 0 is a constant and v(¢) > 0 is a smooth function. Then we
have

u” = afa — 1)(=t)*2u(t) — 2a(—t)* ' (t) + (—t)*v" (¢).
And we obtain

(2.4) (—-t)*v(t)ala—1)+ g] ~ 2a(—t)*T1'(t) + (—t)*t2"(t) < 0.
Let § be a positive constant such that 62 = ¢3%. Then we have

c 12 c¢-1
— — - - _— 2.
ala 1)+4 (o 2)-1- 1 >4
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Then ¢ is a constant independent on a. Equation (2.4) gives
(2.5) 2atv' (t) + (—t)%0" (t) < —6%v(t).

Let 8 = 2a and we choose a > 0 such that 8 < 1, that is, a < 3.
Then (2.5) becomes

(7o) < -5

Upon integration we have

(2 6) (—7)PV' (1) — (=)' (t) < — / (62:)(23)[3 ——==ds, t<T1<~—1.

Here we have two following cases:
i) If v/(7) > 0 for some T < —tp, then (2.6) implies that

—(-t)?v'(t) < -C
for some positive constant C. We have

c ( C(=9)*~*
-8
as < 1. Hence v(t) < 0 for some ¢, contradicting that v(¢) > 0 for all

t < —ip.
ii) We have v'(t) < 0 for all t < —tp. Equation (2.6) implies that

2'03
—T)ﬂ'v() / (5 )(2);3‘1 >0

|t - —00,

v(t) < o(r) — / = )ﬁds =v(T) + ———

for all t < 7 < —tp. As V() < 0 for all t < —t5, we have

T 2
P 2 utr) [ s = vl gl
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Let t — 0o we have

o(r) &
—(— >N
( ) (T) ( )1 B1— ,3
Or after changing the parameter we have
Vi) o1 8
v(t)‘tl—,@ —00 <t < —1ip.

Choosing a < % close to % so that B < 1 is close to 1 and using the
fact that J is independent on o or 3, we have

v(E)
o) ST
for a big integer N > 2. This gives

v(t) > C(=t)N, t< —tg,

where C is a positive constant. (2.6) implies that

2(_\N
(—)P'(t) > (—7)Pv '(T)+/ o ()28)5 ds — 0 as t— —oo0.
Thus v'(t) > 0 for ¢ small, which is also a contradiction. Hence there
is no solution to equation (2.3). O

In particular, if R(g) < 0, then using Lorentzian warped product
it is impossible to obtain a Lorentzian metric of uniformly negative
scalar curvature outside a compact subset. The best we can do is when
u(t) = (co +12)3, or f(t) = (co + £2)T¥D, for some positive number
co, where the scalar curvature is negative but goes to zero at infinity.

THEOREM 2.5. Suppose that R(g) = 0 and R(t,z) = R(t) € C*®
((—o0, 00)). Assume that for |t| > to there exist an upper solution u..
and a lower solution u.. such that 0 < u_ < u.. Then there exists a
solution u of equation (2.3) such that 0 < u_ < u < uy for |t| > to.
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Proof. We have only to show that there exist an upper solution i,
and a lower solution %_ such that for all ¢ € (—00,00) % < .
Since R(t) € C*((—o0,00)), there exists a positive constant b such
that |R(t)| < b for [t| < to.

Since +1u+ (t) + R(t)u+(t) < n4£1 (ul(t) + bPuy(t)), if we divide
the given interval [—tp,to] into small intervals {I;}? ,, then for each
interval I; we have an upper solution uf (t) by parallel transporting
cosbt such that 0 < ¢p < v’ (t) < 1. That is to say, for interval I;,
= +1 An gl (8) +R(t)u(2) < 20 (uh ()" +b%u’ (t)) = 0, which means that
v’ (t) is an upper solution for each interval I;. Then put @,(t) = u’.(¢)
for t € I; and @4 (t) = us(t) for [t| > tp, which is our desired(weak)
upper solution such that cp < @4+(t) < 1 for all [t]| > .

Put i_(t) = coe~ ! for |t] < to and some large positive o, which will
be determmed later, and @ u (t) = u_(t) for [t| > tp. Then, for [t| < to,
n o () + R(thu—(0) 2 285 (" (0) - PPu_ (1)) = sinreoe™” (o —17) >
0 for large o.. Thus %_(t) is our desired (weak) lower solution such that
for all t € (~00,00) 0 < G (t) < Gy (t). O

THEOREM 2.6. Suppose that R(g) = 0. Assume that R(t,z) =
R(t) € C°°((—00,00)) is a function such that

4n

cl 9
R < t
— i@ ROV for [t]>to,

where to > 0 and 0 < ¢ < 1 are constants. Then equation (2.3) has a
positive solution on (—o0, 00).

Proof. Put uy(t) = (co +t?)% . Then

1 3
ul(t) = 5(co +12)71 - 5t (o +t2)~1
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Tl (8) = RO ()

= (e + )7 = 2o+ )78 - RO)(eo + 170}

= (o + ) H 2o + 1) — 8%] — Bt)(co + 1) F(ao + )2
< =" teo+ ) o146+ 2 1 (e~ 1

Since 0 < ¢ < 1,
ecd 2
2¢0(1 +¢) + 2 +(c—1)t* <0, t< —ip.

Therefore u. (t) is our upper solution. And put u_(t) = e~/tl, where

a is positive constant and will be determined later. Then u” (t) =
2,—a|t|
a’e

4n 4n

R o _ - =t 2, —at] __ —alt|
m—ry 1u_(t) R(t)u_(¢t) % R(t)e
4n
=€ (n + 1% )
>0

for large a and ¢, < —tp. Since |t| > tp, we can take a large so that
u_(t) is a lower solution 0 < u_(t) < u4(t). O

COROLLARY 2.7. Suppose that R(g) = 0. Assume that R(t,z) =

R(t) € C*°((—00,00)) is a function such that
dn ¢ 1
———-—=<R(t)S0 £ t >t
n+14¢2 )= or |t o

where to > 0 and 0 < ¢ < 1 are constants. Then equation (2.3) has
a positive solution on (—o0,00) and on M the resulting Lorentzian
warped product metric is a nonspacelike future ( or past ) geodesically
complete metric of non-positive scalar curvature outside a compact set.
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Proof. Since R(g) =0 and R(t, z) £ 0, the lower solution u_ (t) =c_

is a small positive constant and the upper solution u(t) = (¢ + tz)%
as in Theorem 2.6. Therefore equation (2.3) has a positive solution

u(t) = 55 (t) such that 0 < u_(¢) < u(t) < uy(t). Hence

=(_f® o _wwT )
dt = —— 1 dt
to \1+£(t) to \1+u(t)™
wf A \?
to 1 +c:+l
o0 1 (o o] 1 o0 n4+_1.
and [~ f()3dt = [ u(t)™Tdt 2 [ T dt — o0

[ o [ () o

and ff‘;of(t)%dthiocfhdt—-»oo). 0

REMARK 2.8. In case that R(g) = 0 and 0 < R(¢) < b% we do
not know whether or not our resulting Lorentzian warped metric is a
nonspacelike future geodesically complete one.

3. Fiber manifold in class (C)

In this section, we assume that the fiber manifold N of
M = (—o00,00) x5 N belongs to class (C). In this case, N admits a Rie-
mannian metric of positive scalar curvature. If we let u(t) = (co +12)4,
then we have

dn  2¢c9 —t?
n+14(co + t2)2’

where ¢ > 1 and ¢ are positive constants. By the similar proof like as
Proposition 2.4, we have the following:

R(ta .’L‘) Z -

Itl > to,
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THEOREM 3.1. If R(g) is positive, then there is no positive solution
to equation (2.3) with
4n c1
—— for t>t or t< —tp.
n+14¢2 0 =70
where ¢ > 1 and ty > 0 are constants.

R(t) < —

If N belongs to (C), then any smooth function on N is the scalar
curvature of some Riemannian metric. So we can take a Riemannian
metric g3 on N with scalar curvature R(g;) = 1;4—_"_‘1k2, where k is a
positive constant. Then equation (2.3) becomes

4n 4n
n+1 n+1

If R(t, ) is the function of only ¢- variable, then we have the following
theorem.

THEOREM 3.2. Suppose that R(g) = ;2% k* and R(t,z) = R(t) €
C*®((—00,00)). Assume that for |t| > to there exist an upper solution
uy and a lower solution u_ such that 0 < u_ < uy. Then there exists

a solution u of (3.1) such that 0 < u_ < u < uy for [t| > to.

(3.1) u”(t) + Ku(t)' ™= — R(t, @)u(t) = 0.

Proof. We have only to show that there exist an upper solution 4 (¢)
and a lower solution %_ (¢) such that for all ¢ € (—o0, 00) i—(t) < @ (t).
Since R(t) € C*°(—o00,'00), there exists a positive constant b such that
|R(t)| < 75b° for [t| < to. Since 1 — z%; < 1 and R(¢) is a bounded
function, small constant cpis an upper solution for |t| < tg. Then put
u4(t) = ¢ for t € [—to,tp] and @ (t) = u(t) for |t| > to, which is our
desired (weak) upper solution such that cg < @4 (t) for all t € [—to, to].
Put @ (t) = coe~!!l for t € [—to,to] and some large positive a, which
will be determined later, and @_(t) = u_(¢) for |[t| > to. Then, for
te [_th t0]>

in n  , 2
> —
— 7Y —()+ R(t)u_(t) > n+1(u —(t) —b*u_(t)
4in
—altl .2 12
1€ (o — %)

n
>0
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for large a. Thus @_(t) is our desired (weak) lower solution such that
forall t € (—00,00) 0 < @_(t) < @4 (t). O

LEMMA 3.3. Let u(t) be a positive smooth function on (—~o0,00). If
u(t) satisfies

u'(t) _C
u(t) ~ t2
for some constant C > 1, then there exists tg > 0 such that for all
ltl >t
u(t) < Colt/*
for some positive constant Cy and ¢ > 1.

Proof. In case that t > &g, we also have the similar proof as in [J.].
Assume that

W'(t) _ C
< —= —to.
” (t) ) for t< -ty

Since C > 1, we can choose € > 1 such that e(e —1) = C. Then from
the hypothesis, we have

(—t)°u"(t) < e(e — 1)(—t) 2u(t).

Upon integration from ¢{(< 7 < 0) to 7, and using integration by
parts, we obtain

(=)' (1) — (=) (t) + e‘/tT(—s)“lu'(s)ds < C/tr(——_s)e'zu(s)ds.
Therefore we have
(3.2) (—7)u/ (1) + e(—7) " u(r) < (—t)u'(t) + e(—t) Tu(t).

We consider two following cases:

328




Nonlinear partial differential equations on semi-Riemannian manifolds

[Case 1] There exists 7 < 0 such that u'(7) > 0.
If there is a number 7 < 0 such that «/(7) > 0, then we have

(—t)fu'(t) + e(—t)* tu(t) > 0.
This gives [, £&ds < [ £ds and (Infu(t)]) < (n¥F[t[*) for all
0 > 7 > t. Hence |u(t)| < c1lt|¢, where ¢; is a positive constant.
[Case 2] There does not exist 7 < 0 such that »'(7) > 0.
In other words, if v/(¢) < 0 for all t < 7 < 0, then u(t) is decreasing.
Thus u(7) is minimizing. Let ¢y be a positive constant such that

(=t)u'(t) + e(—t)* ult) > —ca,
from equation(3.2). Thus for all0 > 7>t

u'(t) S € c2 S E"’
W) =1 w1
where € > 1. This gives f; 1;/: ds < f  &ds and (In |u(t)]) <

(ln3|‘;(,|—?|t|€) for all 0 > 7 > t. Hence u(t) < C|t|¢ for some positive
constant C.

Thus from two cases we always find 5 > 0 and a constant cg > 0
such that

u(t) < colt]*
for all |t] > to. 0

In Proposition 3.4, when C < n(n — 1), we can prove the follow-
ing fact about the nonexistence of warping function, using the above
Lemma.

PROPOSITION 3.4. Suppose that N belongs to class (C). Let g be a
Riemannian metric on N. We may assume that R(g) = ;}fik2, where k
is a positive constant. On (—oo0,00)X ¢ N, there does not exist a warped

product metric
g =—dt’ + f(t)°g
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with scalar curvature
n(n —1)
t2
forallz € N andt >ty ort < —tg, where ty is a positive constants.

0 < R(t,z) = R(t) <

Proof. Assume that we can find a warped product metric on
(—00,00) x¢N with

n(n — 1)
forallz € N and t > tg or t < —tg. In case that t > tg, we have similar
proof as in [J.]. So we assume the case that ¢ < —tp. In equation (2.3),
we have

(3.3) in [“”(t)+ K ]=R(t)§n_(n__1).

n+l|ult) g t2

" (n—1)(n+1)
u’(t) < ‘

u(t) — t42

(3.4)

In equation (3.4), we can apply Lemma 3.5 and take € = -"—"22 Hence
we have ty > a such that

u(t) < co(-1)¢

for some positive constants cg and all ¢t < —1p.

Then 12 ,
- 2 c_2’
u(t) ey t

where 0 < ¢ < E_isa positive constant. Hence equation(3.3) gives
= g
€

u'(t) . (n+1)(n—-1)—29¢
u(t) — 4¢2 ’
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where 4¢’ > 6 > 0 is a constant. We can choose ¢’ > 0 such that

mn+1)(n—-1)—-6 n+1 n—1
-6 (—— -4
- = (= -8
for small positive §. Applying the Lemma again, we have ¢; > 0 such

that

u(t) < er(—t)"F 7

for some ¢; > 0 and all t < —¢; and
2 17"
LA -
untt (1)
where € = nilé and 0 < ¢’ < T Thus equation (3.3)and (3.5) give

51
II (t) S 0
for t negatively large. Hence u(t) < ca(—t) for some constant cz > 0
and negatively large t. From equation (3.3) we have
u'(t) _ —k? (n+(n—-1) _
u(t) — (62( t))mq 4¢2 - t
for t negatively large enough, as n > 3. Here c3 is a positive constant.
Multiplying u(t) and integrating from ¢ to 7 we have

-
u'(r)—/(t) < Cs/ @ds, t< 7 < 1.
t

(3.5)

We consider two following cases: [Case 1] There exists 7 < min{to,
t1} such that «/(7) > 0. Since ftT 1%’ids < 0,for t < T < —t, if

(1') > 0 for some T, then u'(t) > c4 for some positive constant cy4.
f u(s)ds > csf] ds. Hence u(t) < 0 for ¢ negatively large enough,
contradicting the fact that u is positive. [Case 2] There does not exist
T < min{tp, 1} such that «/(7) > 0. In other words, if ¥/(¢) < 0 for all
t negatively large, then u(t) is decreasing, hence

T T
w'(t) — /() > c3/ @ds > Cau(T)/ —l-ds = cau('r)ln|—t—| — 00.
t S8 t —S$ T

Thus u'(t) has to be positive for some ¢ negatively large, which is a
contradiction to the hypothesis.
Therefore there does not exist such warped product metric. O
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THEOREM 3.5. Assume that R(t,z) = R(t) € C®((—00,0)) is a
positive function such that
4n
n+1|te

where tg > 0, a < 2, C and b are positive constants. Then equation
(3.1) has a positive solution on (—o0, 00).

blt|® = R(¢t) =

for |t| > to,

Proof. We let uy = cg + t*™ > where m is a positive integer. If we
take m large enough so that 2m 7 > 2, then we have

4n __4_
ol (1) + R (07T - R ()

n o, in 4
k
1u+(t) + ——

n o 2m(2m—1) k2 14
- n+ lt [ 2 4 (t2m + ) Itla(t2m )

<0, t< -ty forsome large to,

)1_L 4n C

wH - Trau+(t)

¢
u( n+1 e

which is possible for large fixed m since a < 2. Therefore u4(t) is our
upper solution. And put u_(t) = e~ %l,a > 0, since t < —tp < 0,

4n
n+1 Y-

u” (t) + ——k2u_(¢)' 7T — R(t)u_(t)

n+ 1
u (t) + ——k2 _(OF 7 = b2u_(¢)
4n

4n
— o —alt|
n+1 totl n+1
4dn —alt| 2 2 4 n—+1
= k a|t|n+1 — 2
n+le a“ + k“e in b
> 0.

k ( —a|t|)1 n+1 b2e—altl

Thus we can take the lower solution u_ (¢) so that 0 < u_ () < u(t).
So by Theorem 3.2., we obtain a positive solution. O
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COROLLARY 3.6. Assume that R(t,z) = R(t) € C°((—o0,0)) is a
positive function such that

blt|* > R(t) > t% for |t| > to,

where tg > a, b and C are positive constants. If C > n(n — 1), then
equation (3.1) has a positive solution on (—o0, ).

Proof. In case that C > n(n—1), we may take u4(t) = C’o+C+|t|Ile,
where Cp, C; are positive constants. Then

4

I () + 2 KPuy ()T — R(t)uy(t)

" t
n+1u+()+n+l

n— n _4 n
< n(n— DO + %kz(co + Ol T~ 2 (0o + 04l ™F)

1——4_
n-—-3 4an 4. Co n+1
<Cilt 'z {n(n-1)-C+ ——k?CPH 41
n+l F Ot 55

<0

which is possible if we take C to be large enough since n(n—1)—C < 0.

And since the exponent 1 — n+-1 is less than 1 and R(t) is a bounded

function, we can take u_(t) = e~/ as in Theorem 3.5. In this case,
we also obtain a positive solution. 0

COROLLARY 3.7. Assume that R(t,z) = R(t) € C®((—o00,00)) is a
positive function such that

4n C
> > —
b> R(t) > nrile for |t| > to,

where tg > 0, a < 2, C and b are positive constants. Then equa-
tion (3.1) has a positive solution on (—o00,00) and on M the resulting
Lorentzian warped product metric is a nonspacelike future geodesically
complete metric of positive scalar curvature outside a compact set.
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Proof. We let uy(t) = co + t2™ as in Theorem 3.5. And since the
exponent 1 — ;3—_3 is less than 1 and R(t) is a bounded function, we can

take the lower solution u_(t) = c¢_ as a small positive constant such
that 0 < u_(t) < u4(t),

n in o, 1t
_— t) + —— _(t 1 - R _{t) >
n+1 u-(?) n+1ku() o (Byu-(t) 20,

which is possible since u(t) = ¢y + t>™ has a positive minimum on
(—00,00). Therefore equation (2.3) has a positive solution u(t) =
F()™F such that 0 < u_(t) < u(t) < u4(t). Hence, similarly as in

Corollary 2.7,
_%_
t n n+i
1+ u(t) nH

/w (11(?(@ 5 (
( dt — oo

and
0o L o e 0 4
ft)hdt = / w(t) T de > / Tt o0
to to to
o (g0 N (L)
and
to 1 to 1
O / Tt — oo),
—o0 —o0

which, by Remark 2.2, implies that the resulting warped product metric
is a nonspacelike future geodesically complete one. O
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COROLLARY 3.8. Assume that R(t,z) = R(t) € C*®((—00,0)) is a
positive function such that

where to > a, b and C are positive constants. If C > n(n — 1), then
equation (3.1) has a positive solution on (—00, 00) and on M the result-
ing Lorentzian warped product metric is a nonspacelike future geodesi-
cally complete metric of positive scalar curvature outside a compact
set.

REMARK 3.9. The result in Proposition 3.4, Theorem 3.5 and Corol-
lary 3.6 are almost sharp as we can get as close to 7—’%’;—1) as possible.
For example, let R(g) = f—:_‘lkz and u(t) = 1+ [t|™F". Then we have
nn - D2 nn-1) [+

RZ n - n ’
14 |65 LI BT

which converges to E%‘Tll as |t| goes to oo.
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