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WARPED PRODUCT SPACES

WITH EINSTEIN METRIC

BVUNG HAK KIM

o. Introduction

Warped products were first introduced by G. I. Kruokovio in 1961,
and then R. L. Bishop and B. O'Neill studied the manifolds with negative
curvature under the name of warped products and they were used for
instance by N. Ejiri, Y. Watanabe, A. Derdzinski and R. Palais to study
conformal transformations and Einstein spaces. A surface of revolution
is a typical example of warped products. The purpose of the present
paper is to determine the warped product AI = B x I M with Einstein
metric and express the geometry of M in terms of warping function f
and the geometries of B and M. In this paper we shall always deal
with connected Riemannian manifolds with positive definite metric, and
suppose that manifolds and quantities are differentiable of class COO.

1. Preliminaries

Let (B, g) and (M, g) be two Riemannian manifolds of dimensions
n and p respectively, and let f > 0 be a smooth function on B. The
warped product AI = B x I M is the product manifold B x M furnished
with the metric tensor 9 = 'lr*(g) + (f 0 'lr)20'*(g), where 'lr and 0' are
the projections of B x M onto B and M, respectively. IT f = 1, then
B x I M reduces to a Riemannian product manifold. B is called the base
of M, and M the fiber. The set of all lifts of B and M being denoted
by £(B) and £(M), respectively. We shall use the same notation for a
vector field on B or M and its lift on AI. IT the curvature tensor R is
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defined by R(E, F)G = DEDFG - DFDEG - D[E,F)G for any vector
fields E, F and G on M, then [1,3]

(1.1) g(R(X, Y)Z, Z') = g(R(X, Y)Z, Z'),

(1.2) g(R(X, U)Y, V) = jDdj(X, Y)g(U, V),

(1.3) g(R(U, V)W, W') = P[y(R(U, V)W; W')

-lIdfIl2 {g(U, W')g(V, W) - g(V, W')g(U, W)}],

where Rand R are the curvature tensors of B and M respectively, and
Ddj is the Hessian of j for g, X, Y, Z, Z' E £(B) and U, V, W; W' E
£(M).

The components of Ricci tensors are given by

(1.4)

(1.5)

(1.6)

- pS(X,Y) = S(X,Y) -lDdj(X,Y),

8(X,U) = 0,

8(U, V) = 8(U, V) - g(U, V)[jLlj +(p -1)lIdjIl2],

where ~j is the Laplacian of j for g, and S, 8 and 8 are the Ricci tensors
of M, B and M respectively.

Let k, k and k be the scalar curvatures of if, B and M, then we have

(1.7) k = k + j-2k - 2pj-l~j ~ p(p - l)j-2I1djIl2.

PROPOSITION 1 [1]. The Warped product if = B XJ M is Einstein
with S = ).9 if and only if

(1) M is Einstein with S = X9,
(2) ).g(X, Y) = 8(X, Y) - pj-lDdj(X, Y), .
(3) ). = j-2X - j-16j - (p - l)j-2I1djIl2.

COROLLARY 2. Let !VI = B x J M and B be the Einstein spaces, tben
we have

(1) M is Einstein,
(2) Ddf(X, Y) = ajg(X, Y),
(3) ). = j-2X - j-l~j - (p - 1)j-2 IIdj II2 ,

where we have put a = (A - ).)!p, so that a is constant.
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2. Complete manifolds admitting a special concircular scalar
field

Let M be an n-dimensional Riemannian manifold with metric tensor
9M· We calf a non-constant scalar field p in M a concircular scalar field
if it satisfies the equation

(2.1)

where D indicates covariant differentiation with respect to gM and 4>
is a scalar field, called the characteristic function of p. If 4> is of the
form 4> = -ap + f3 with constant coefficients a and f3, then p is called
a special concircular scalar field. The term "concircular" comes form
the concircular transformation introduced by K. Yano [5]. A concircular
transformation is by definition a conformal transformation preserving
geodesic circles.

We denote the number of isolated stationary points of a concircular
scalar field p in M by n(p). Y. Tashiro [4] studied the complete manifolds
admitting concircular or special concircular scalar fields.

THEOREM 3 [4]. Let M be a complete Riemannian manifold of di
mension n.~ 2 and suppose that it admits a special concircular field p
satisfying the equation

(2.2) DxDyp = (-ap +(3)g(X, Y).

Then M is one of the following manifolds:

(LA) ifa = f3 = 0, the direct product V x I ofan (n -I)-dimensional
complete Riemannian manifold V with a straight line I,

(LB) ifa =°but f31- 0, a Euclidean space,
(II.A) ifa = -c'l <°and n(p) = 0, a pseudo-hyperbolic space of zero

or negative type,
(I1.B) ifa = _c2 <°and n(p) = 1, hyperbolic space of curvature _c2

and
(III) if a = c2 > 0, a spherical space of curvature c'l, where c is a

positive constant.
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3. Main Theorem

Let 0 be a point of a Riemannian manifold M and N a geodesic
hypersphere with center O. Take a normal coordinate system (u, uk)
with center 0, where u be the arc-length of any geodesic ray issuing
from 0 and uk are coordinates of N, and let the metric form of N be
ds'-1 = g~jdUiduj. We shall first prove

THEOREM 4*. H the metric form ~f M is given by

(3.1)

for some function h(u) of u, with respect to normal coordinate system
(u, uk) except at 0, then we obtain the following properties:

(1) The function h(u) is differentiable at u =0 and satisfies

(3.2) h(O) = 0, h'(O) =1= O.

(2) The (n -I)-dimensional manifold N with metric g' is isometric to
a sphere of curvature k' = h'2(0), provided n - 1 ~ 2.

(3) The manifold M is of constant curvature k if and only if h satisfies
the equation

(3.3)

provided n ~ 3 and

(3.4) h" + kh = 0,

provided n = 2. The equation (3.4) is derived from (3.3).

Proof. In the case of n = 2, the fact that dS2 is non-degenerate at 0
is equivalent to that h2(u)/u2 has a non-zero limit as u tends to 0 (see
J. L. Kazdan and F. W. Warner [2] and A. Besse [1, p.96]). This implies
the property (1).

In the case of n > 2, we consider a geodesic hypersphere N with
center 0, and let X and Y be vectors at O. All geodesics tangent to the

*Professor Y. Tashiro kindly suggested me the proof of Theorem 4.
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2-plane spanned by X and Y at 0 compose a surface S. The induced
metric of the surface S is given by

where I indicates the restriction on the intersection N n S. By the above
argument in the case of n = 2, we have also the property (1).

(2) With respect to (u,u h ) except at 0, the metric tensor 9 of M has
components

g11 = 1, gil = 0, gij = h2
g:j ,

the Christoffel symbol h",J of M has components

and the others are zero, where { }g' is the Christoffel symbol composed
from g' of N. The curvature components K>.p.v'" of M has components

K I hh'"jli = gij' K h K' h h'2(' {;h , {;h)jki = jki - gki(Jj -gji(Jk ,

their equivalents and the others are zero, where K~j/ is the curvature
tensor of N with respect to g'. The square of the magnitude IIK>.p.v"lI is
equal to

where II IIg' indicates the magnitude with respect to the metric g'. Since
h(u) -+ 0 as u -+ 0 and g~j and K~jih are independent of u, it follows
that

(3.6)

provided n 2:: 3, that is N with metric g' i$ of constant curvature k' =
h'2(O). As a geodesic hypersphere is diffeomorphic to an (n -I)-sphere,
the manifold N itself is isometric to an (n - 1)-sphere of curvature k'.
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(3) H M is of constant curvature k, that is,

K>..p.,," = k(9p.,,81 - 9>..,,8:),

then comparing the component K kji
h with the third expression of (3.5),

we have the equation (3.3). Deriving it in u, we have hIt /h = -k which
satisfies the first and second equations of (3.5) for the constant sectional
curvature of M. The converse is clear. In the case of n =2, the Gaussian
curvature of M is given by

K 1221
922

H this equals to a constant k, then we have the equation (3.4).

By the Corollary 2, we see that the base space B of the warped product
M = B x I M admits the special concircular scalar field f, that is,
Ddf = 'Yfg(X, Y) for'Y = (X - )..)/p. Hence, by virtue of Theorems 3
and 4, we can state.

THEOREM 5. Let M = B XI M be a complete Einstein Riemannian
manifold and B be the Einstein one, then we have

(I) H'Y = 0, then M = (VxI)xIM ofan (n-I)-dimensional complete
Riemannian manifold V, straight line I and an Einstein manifold M, and
the warping function f is given by f = axn , where a is arbitrary constant
and x n is on I. Hence the metric form of iiI is given by

dS2 = (dx n )2 + (ax n )2dS2+ a2dS,2

for dS
2

and dS'2 are metric forms of M and V, respectively. Thus, if
M is the geodesic hypersphere of I x I M, then by use of Theorem 4,
M is the sphere of curvature a2 and M is the product spaces of (p + I)
dimensional Euclidean space I x I M and V.

(II, A) H'Y = -c2 <°and n(p) = 0, then Mis the warped products of
a pseudo-byperbolic space ofzero or negative type and Einstein manifold
M. Moreover the warping function f is given by

{
(II, Ao)

f= (II, A_)
aexpcxn ,

a sinhcxn
•



Warped product spaces with Einstein metric 473

For tbe case of( II, Ao), M is tbe warped products ofa pseudo-byperbolic
space. H f is (II, A_) and if M is tbe geodesic byperspbere of I x / M,
then M is the sphere of a2c2 provided p ~ 2. Tbus M is tbe product
spaces of (p + 1)-dimensional space I x / M of constant curvature K =
-e < 0 and V if and only if K =_c2 except at x n =O.

(II, B) H f = _c2 < 0 and n(p) = 1, then M is tbe warped products
of the hyperbolic space of curvature a and an Einstein space. Moreover
tbe warping function f is given by

f =acoshcx n
•

(III) H f = c2 > 0, then f is given by f = a cos cxn and M is the
warped products of the spherical space of curvature f and an Einstein
space.
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