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RIGIDITY AND NONEXISTENCE OF RIEMANNIAN

IMMERSIONS IN SEMI-RIEMANNIAN WARPED PRODUCTS

VIA PARABOLICITY

Railane Antonia, Henrique F. de Lima, and Márcio S. Santos

Abstract. In this paper, we study complete Riemannian immersions
into a semi-Riemannian warped product obeying suitable curvature con-

straints. Under appropriate differential inequalities involving higher order

mean curvatures, we establish rigidity and nonexistence results concern-
ing these immersions. Applications to the cases that the ambient space is

either an Einstein manifold, a steady state type spacetime or a pseudo-
hyperbolic space are given, and a particular investigation of entire graphs

constructed over the fiber of the ambient space is also made. Our ap-

proach is based on a parabolicity criterion related to a linearized differ-
ential operator which is a divergence-type operator and can be regarded

as a natural extension of the standard Laplacian.

1. Introduction

The aim of the present paper is to study the geometry of complete n-
dimensional Riemannian immersions into a semi-Riemannian warped product

of the type M
n+1

= ϵI ×f M
n, where Mn is an n-dimensional connected ori-

ented Riemannian manifold, I ⊆ R is an open interval, f : I → R is a positive

smooth function and ϵ = ±1, being ϵ = 1 when M
n+1

is a Riemannian space

and ϵ = −1 when M
n+1

is a Lorentzian space. In the Lorentzian case, M
n+1

is called a generalized Robertson-Walker (GRW) spacetime.
This thematic has been treated by several authors along the last years, which

have used a considerable amount of analytical tools in their investigations.
Furthermore, we observe that in a considerable part of these it is assumed that
the ambient space obeys appropriate curvature constraints. See, for instance,
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the works [3,4,6–8,11,12,16–18,21–24,29,30]. See also Chapter 7 of the excellent
book of Aĺıas, Mastrolia and Rigoli [13] and references therein.

Here, under appropriate differential inequalities involving higher order mean
curvatures and assuming that the ambient space obeys suitable curvature con-
straints, we establish new rigidity and nonexistence results concerning these
immersions. Applications to the cases that the ambient space is either an Ein-
stein manifold, a steady state type spacetime or a pseudo-hyperbolic space are
given, and a particular investigation of entire graphs construct over the fiber
of the ambient space is also made. Our approach is based on a parabolicity
criterion related to a linearized differential operator which is a divergence-type
operator and can be regarded as a natural extension of the standard Laplacian.
This criterion is obtained as a application of Theorem 2.6 in [28].

This manuscript is organized in the following way: In Section 2 we recall
some basic facts related to Riemannian immersions in semi-Riemannian warped
products and we quotes the auxiliaries lemmas which will be used to prove our
main results. We start Section 3 establishing our parabolicity criterion for
complete Riemannian immersions. Next, we present our rigidity and nonexis-
tence results concerning complete spacelike hypersurfaces in a GRW spacetime
and, afterwards, we treat the case of complete two-sided hypersurfaces in a
Riemannian warped product. Finally, we close this section with the study of
entire graphs constructed over the fiber of the ambient space.

2. Preliminaries

LetM
n+1

be a connected semi-Riemannian manifold with metric g = ⟨ , ⟩ of
index ν ≤ 1, and semi-Riemannian connection ∇. For a vector field X ∈ X(M),
let ϵX = ⟨X,X⟩. We will say that X is a unit vector field if ϵX = ±1, and
timelike if ϵX = −1.

Now, let Mn be a connected, n-dimensional oriented Riemannian manifold,
I ⊆ R an open interval and f : I → R a positive smooth function. In the

product differentiable manifold M
n+1

= I ×Mn, let πI and πM denote the
projections onto the I and M factors, respectively. A particular class of semi-
Riemannian manifolds having conformal fields is the one obtained by furnishing
M with the metric

⟨v, w⟩p = ϵ⟨(πI)∗v, (πI)∗w⟩+ f(πI(p))
2⟨(πM )∗v, (πM )∗w⟩

for all p ∈ M and all v, w ∈ TpM , where ϵ = ϵ∂t
and ∂t is the standard

unit vector field tangent to I. Such a space is a particular case of a semi-

Riemannian warped product, and, from now on, we will just write M
n+1

=
ϵI ×f M

n to denote it. In the Lorentzian setting ν = 1 or, equivalently,

when ϵ = −1, adopting the terminology established in [14], M
n+1

is called a
generalized Robertson-Walker (GRW) spacetime.
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2.1. Riemannian immersions in semi-Riemannian warped products

In all that follows, we will consider Riemannian immersions ψ : Σn →M
n+1

,
namely, immersions from a connected, n-dimensional orientable differentiable

manifold Σn into a semi-Riemannian warped product M
n+1

= ϵI ×f M
n, such

that the induced metric g = ψ∗(g) turns Σn into a Riemannian manifold. In
the Lorentz case ν = 1, we will refer to (Σn, g) as a spacelike hypersurface of

M
n+1

. For sake of simplicity, we will also denote g by ⟨ , ⟩ and ∇ will stand for
its Levi-Civita connection, while ∇ will represent the Levi-Civita connection
of the ambient space.

In this setting, we will orient Σn by the choice of a unit normal vector field N
on it. So, we have that ϵ = ϵ∂t

= ϵN . Denoting by A the Weingarten operator
corresponding to N , at each p ∈ Σn, A restricts to a self-adjoint linear map
Ap : TpΣ → TpΣ.

For 0 ≤ r ≤ n, let Sr(p) denote the r-th elementary symmetric function on
the eigenvalues of Ap; this way one gets n smooth functions Sr : Σn → R, such
that

det(tI −A) =

n∑
k=0

(−1)kSkt
n−k,

where S0 = 1 by construction. If p ∈ Σn and {ek} is a basis of TpΣ formed by
eigenvectors of Ap, with corresponding eigenvalues {λk}, one immediately sees
that

Sr = σr(λ1, . . . , λn),

where σr ∈ R[X1, . . . , Xn] is the r-th elementary symmetric polynomial on the
indeterminates X1, . . . , Xn.

Also, we define the r-th mean curvature Hr of ψ, 0 ≤ r ≤ n, by(
n

r

)
Hr = ϵrSr = σr(ϵλ1, . . . , ϵλn).

We observe that H0 = 1 and H1 is the usual mean curvature H of Σn.
For t0 ∈ I, we orient the slice Σn

t0 = {t0} ×Mn by using the unit normal
vector field ∂t. According to Example 5.6 of [5] and Section 2 of [12], Σt0 has

constant r-th mean curvature Hr = (−ϵ)r
(

f ′(t0)
f(t0)

)r

with respect to ∂t.

For 0 ≤ r ≤ n, one defines the r-th Newton transformation Pr on Σn by
setting P0 = I (the identity operator) and, for 1 ≤ r ≤ n, via the recurrence
relation

(2.1) Pr = ϵrSrI − ϵAPr−1.

With a trivial induction, from (2.1) we verify that

(2.2) Pr = ϵr(SrI − Sr−1A+ Sr−2A
2 − · · ·+ (−1)rAr),

so that Cayley-Hamilton theorem gives Pn = 0. Moreover, since Pr is a poly-
nomial in A for every r, it is also self-adjoint and commutes with A. Therefore,
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all bases of TpΣ diagonalizing A at p ∈ Σn also diagonalize all of the Pr at p.
So, let {e1, . . . , en} be an orthonormal frame on TpΣ which diagonalizes Ap,
Ap(ei) = λi(p)ei, then from (2.2) we have that

(2.3) (Pr)pei = ϵr
∑

i1<···<ir,ij ̸=i

λi1(p) · · ·λir (p)ei.

For each Newton transformation Pr, 0 ≤ r ≤ n, we associate a second order
linear differential operator Lr : C∞(Σ) → C∞(Σ) given by

Lr(ξ) = tr(Pr ◦ ∇2ξ),

where ∇2ξ : X(Σ) → X(Σ) denotes the self-adjoint linear operator equivalent
to the Hessian operator of ξ, defined by

⟨∇2ξ(X), Y ⟩ = ⟨∇X∇ξ, Y ⟩
for all vector fields X,Y ∈ X(Σ).

Let {e1, . . . , en} be a local orthonormal frame on Σn. We have that

div(Pr(∇ξ)) =
n∑

i=1

⟨(∇eiPr)(∇ξ), ei⟩+
n∑

i=1

⟨Pr(∇ei∇ξ), ei⟩

= ⟨divPr,∇ξ⟩+ Lr(ξ),(2.4)

where the divergence of Pr on Σn is defined by

divPr := tr(∇Pr) =

n∑
i=1

(∇eiPr)(ei) and divP0 = divI = 0.

We close this subsection recalling a terminology introduced in [2]. We say
that a Riemannian immersion ψ : Σn → ϵI ×f M

n is bounded away from the
future infinity of ϵI ×f M

n if there exists t ∈ I such that

ψ(Σ) ⊂ {(t, x) ∈ ϵI ×f M
n : t ≤ t},

and we say that it is bounded away from the past infinity of ϵI ×f M
n if there

exists t ∈ I such that

ψ(Σ) ⊂ {(t, x) ∈ ϵI ×f M
n : t ≥ t}.

2.2. Some auxiliary lemmas

From (2.4), we have that the operator Lr is elliptic if and only if Pr is positive
definite (for an appropriate choice of the orientationN of Σn). In particular, the
Laplace-Beltrami operator L0 = ∆ is always elliptic. The following two lemmas
establish sufficient conditions to guarantee the ellipticity of the operator L1 and
Lr when r ≥ 2 (see, for instance, Lemmas 3.2 and 3.3 of [6]).

Lemma 2.1. Let M
n+1

= ϵI ×f M
n be a semi-Riemannian warped product

and let ψ : Σn → M
n+1

be a Riemannian immersion. If H2 > 0 on Σn, then
L1 is elliptic or, equivalently, P1 is positive definite (for a appropriate choice
of the Gauss map N).
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In what follows, by an elliptic point in a Riemannian immersion we mean a
point where all principal curvatures have the same sign.

Lemma 2.2. Let M
n+1

= ϵI ×f M
n be a semi-Riemannian warped product

and let ψ : Σn →M
n+1

be a Riemannian immersion. If there exists an elliptic
point of Σn, with respect to an appropriate choice of the Gauss map N , and
Hr+1 > 0 on Σn for 2 ≤ r ≤ n − 1, then for all 1 ≤ j ≤ r the operator Lj is
elliptic or, equivalently, Pj is positive definite (for a appropriate choice of the
Gauss map N , if j is odd).

Now, we will consider two particular functions naturally attached to Σn,
namely, the (vertical) height function h = (πI)|Σ and the angle function Θ =
⟨N, ∂t⟩.

A simple computation shows that the gradient of πI on ϵI ×f M
n is given

by

(2.5) ∇πI = ϵ⟨∇πI , ∂t⟩∂t = ϵ∂t.

So, from (2.5) we verify that the gradient of h on Σn is

(2.6) ∇h = (∇πI)⊤ = ϵ∂⊤t = ϵ∂t −ΘN.

In particular, from (2.6) we get

(2.7) |∇h|2 = ϵ
(
1−Θ2

)
,

where | | denotes the norm of a vector field on Σn.
Our next lemma gives a sufficient condition to guarantee the existence of an

elliptic point in a Riemannian immersion. For its proof, see Lemma 5.4 of [5]
and Lemma 4 of [8].

Lemma 2.3. Let M
n+1

= ϵI ×f M
n be a semi-Riemannian warped product

and let ψ : Σn →M
n+1

be a Riemannian immersion. If −ϵf(h) attains a local
minimum at some p ∈ Σn, such that f ′(h(p)) ̸= 0, then p is an elliptic point
for Σn.

From Lemma 4.1 of [6] and Proposition 6 of [12] we get the following suitable
formulas:

Lemma 2.4. Let ψ : Σn → ϵI ×f M
n be a Riemannian immersion and let

g : I → R be any primitive of the warping function f . Then, for every r =
0, . . . , n− 1,

Lr(g(h)) = ϵcr (f
′(h)Hr +Hr+1f(h)Θ) ,

where cr = (n− r)
(
n
r

)
= (r + 1)

(
n

r+1

)
.

Moreover, from Lemma 3.1 of [5] and equation (3.12) of the proof of Theorem
2 in [8], the divergence of the Newton transformation Pr is given by:
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Lemma 2.5. Let ψ : Σn → ϵI ×f M
n be a Riemannian immersion. Then

⟨divP1,∇h⟩ = −ϵ(RicM (N∗, N∗) + ϵ(n− 1)(log f)′′(h)|∇h|2)Θ,(2.8)

where RicM denotes the Ricci curvature of the fiber Mn and N∗ = N − ϵΘ∂t is
the projection of the N onto Mn. Moreover, when Mn has constant sectional
curvature κ,

(2.9) ⟨divPr,∇h⟩ = −ϵ(n− r)

(
κ

f2(h)
+ ϵ(log f)′′(h)

)
⟨Pr−1∇h,∇h⟩Θ.

3. Main results

This section is devoted to present our rigidity and nonexistence results con-
cerning complete Riemannian immersions in a semi-Riemannian warped prod-
uct. Our approach is based on a suitable parabolicity criterion which is obtained
as an application of Theorem 2.6 in [28].

3.1. A parabolicity criterion for Riemannian immersions

Considering the setting of the previous section, we define the operator Lr :
C∞(Σ) → C∞(Σ) by

(3.1) Lr(ξ) := div(Pr(∇ξ)).

According to Definition 5.4 in [11] and Definition 30 in [12], we say that a
Riemannian immersion ψ : Σn → ϵI×f M

n is Lr-parabolic if the only bounded
above C1 solutions of the differential inequality Lrξ ≥ 0 are the constant ones.

The next result provides sufficient conditions which guarantee the Lr-para-
bolicity of Riemannian immersions in a semi-Riemannian warped product.

Proposition 3.1. Let ψ : Σn → M
n+1

be a complete Riemannian immersion

in M
n+1

= ϵI ×f M
n. Suppose that the Newton transformation Pr is positive

semi-definite and supΣHr < +∞ for some 0 ≤ r ≤ n. If, for some reference
point o ∈ Σn,

(3.2)

∫ +∞

0

dt

vol(∂Bt)
= +∞,

where Bt is the geodesic ball of radius t in Σn centered at the origin o, then Σn

is Lr-parabolic.

Proof. Let us consider on Σn the symmetric (0, 2)-tensor field ξr given by

ξr(X,Y ) := ⟨PrX,Y ⟩

for all X,Y ∈ TΣ or, equivalently,

ξr(∇u, ·)♯ = Pr(∇u),

where ♯ : T ∗Σ → TΣ denotes the musical isomorphism. Hence, we have

Lr(u) = div
(
ξr(∇u, ·)♯

)
.
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Moreover, since we are assuming that Pr is positive semi-definite, tr(Pr) = crHr

(see Lemma 2.1 of [19]) and supΣHr < +∞, we can define a positive continuous
function ξr+ on [0,+∞) by:

ξr+(t) := cr sup
∂Bt

Hr.

Thus, for all X ∈ TΣ with |X| = 1, we obtain

0 ≤ ξr(X,X) ≤ ξr+(t) ≤ cr sup
Σ
Hr < +∞.

So, we get ∫ +∞

0

dt

ξr+(t)vol(∂Bt)
≥

(
cr sup

Σ
Hr

)−1 ∫ +∞

0

dt

vol(∂Bt)
.

Consequently, from hypothesis (3.2) we get∫ +∞

0

dt

ξr+(t)vol(∂Bt)
= +∞.

Therefore, we are in position to apply Theorem 2.6 of [28] to conclude the
proof. □

3.2. Rigidity and nonexistence of spacelike hypersurfaces

When the ambient space is a GRW spacetime M
n+1

= −I ×f M
n, since

∂t is a unitary timelike vector field globally defined on M
n+1

, there exists a
unique timelike unitary normal vector field N globally defined on a spacelike

hypersurface ψ : Σn → M
n+1

which is in the same time-orientation as ∂t. We
then say that N is future-pointing and, from the Cauchy-Schwarz inequality for
timelike vectors, we have that Θ ≤ −1.

Taking into account the previous digression, we can state and prove our first
rigidity result.

Theorem 3.2. Let ψ : Σn → M
n+1

be a complete spacelike hypersurface

immersed into a GRW spacetime M
n+1

= −I ×f M
n. Suppose that Σn is

bounded away from the future infinity of M
n+1

and H > 0 on Σn. If hypothesis
(3.2) is satisfied and

(3.3) H ≥ f ′

f
(h),

then Σn is a slice of M
n+1

.

Proof. From (3.1) and Lemma 2.4 we have

(3.4) L0(g(h)) = −n(f ′(h) + f(h)HΘ).
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Since we are assuming H > 0 on Σn and taking into account that Θ ≤ −1,
from (3.4) we get

(3.5) L0(g(h)) ≥ nf(h)

(
H − f ′

f
(h)

)
.

Thus, from inequalities (3.3) and (3.5) we obtain that L0(g(h)) ≥ 0.
Moreover, hypothesis (3.2) guarantees that Σn is L0-parabolic. But, since

Σn is bounded away from the future infinity of M
n+1

, we have that g(h) is
bounded from above. Consequently, g(h) is constant on Σn. Therefore, we
conclude that the height function h is constant and, hence, Σn must be a slice

of M
n+1

. □

Next, we will consider a natural extension of the (n+1)-dimensional steady

state spacetime −R ×et Rn, the so-called steady state-type spacetime M
n+1

=
−R×etM

n, whereMn is a connected n-dimensional Riemannian manifold (see
Section 4 of [2]). It is worth to note that when a steady state-type spacetime
admits a complete spacelike hypersurface which is bounded away from the
future infinity, Lemma 7 of [2] guarantees that its Riemannian fiber Mn is
necessarily complete. In this setting, Theorem 3.2 reads as follows.

Corollary 3.3. Let ψ : Σn → M
n+1

be a complete spacelike hypersurface

immersed into a steady state-type spacetime M
n+1

= −R ×et M
n. Suppose

that Σn is bounded away from the future infinity of M
n+1

. If H ≥ 1 and

hypothesis (3.2) is satisfied, then Σn is a slice of M
n+1

.

For r = 1, we will suppose that the GRW spacetime obeys a suitable curva-
ture constraint.

Theorem 3.4. Let ψ : Σn → M
n+1

be a complete spacelike hypersurface

immersed into a GRW spacetime M
n+1

= −I×f M
n which obeys the following

curvature constraint

(3.6) RicM ≤ (n− 1) inf
I
(ff ′′ − (f ′)2)⟨ , ⟩M ,

where RicM stands for the Ricci tensor of Mn. Suppose that Σn is bounded

away from the future infinity ofM
n+1

, H > 0 with supΣH < +∞, and H2 > 0.
If hypothesis (3.2) is satisfied and

(3.7)
H2

H
≥ f ′

f
(h),

then Σn is a slice of M
n+1

.

Proof. From (3.1), jointly with Lemma 2.4 and equation (2.8) of Lemma 2.5,
we obtain that

L1(g(h)) = − f(h)((n− 1)(log f)′′(h)|∇h|2 − RicM (N∗, N∗))Θ

− c1(f
′(h)H + f(h)H2Θ),(3.8)
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where N∗ = N +Θ∂t.
On the other hand, from (2.7) we have that

⟨N∗, N∗⟩M =
1

f2(h)
|∇h|2.

So, using curvature constraint (3.6) and Θ ≤ −1, from (3.8) we get that

L1(g(h)) ≥ c1f(h)H

(
H2

H
− f ′

f
(h)

)
.

Thus, from (3.7) we have that L1(g(h)) ≥ 0. Moreover, by assumptions
supΣH < +∞ and (3.2), and taking into account that Lemma 2.1 guaran-
tees that P1 is positive definite, it follows from Proposition 3.1 that Σn is
L1-parabolic.

Consequently, since Σn is bounded away from the future infinity of M
n+1

,
we obtain that g(h) is constant on Σn. Therefore, we conclude that the height

function h is constant, which means that Σn is a slice of M
n+1

. □

When the ambient spacetime is an Einstein manifold, Theorem 3.4 reads as
follows:

Corollary 3.5. Let ψ : Σn → M
n+1

be a complete spacelike hypersurface

immersed into a Einstein GRW spacetime M
n+1

= −I ×f M
n. Suppose that

Σn is bounded away from the future infinity of M
n+1

. If H > 0 with supΣH <
+∞, H2 > 0 and hypotheses (3.2) and (3.7) are satisfied, then Σn is a slice of

M
n+1

.

Proof. From Corollary 9.107 of [20] (see also Section 2 of [15]) we have that

M
n+1

is an Einstein manifold with Ricci tensor Ric = c g, c ∈ R, if and only
if the fiber (Mn, g

M
) has constant Ricci curvature RicM = c⟨ , ⟩M and the

warping function f satisfies the differential equations

(3.9)
f ′′

f
=
c

n
and

c(n− 1)

n
=
c+ (n− 1)(f ′)2

f2
.

Hence, from (3.9) we obtain (n − 1)(log f)′′ = c
f2 . Therefore, in this case, we

have that

RicM = (n− 1) inf
I
(ff ′′ − (f ′)2)⟨ , ⟩M

and, consequently, the result follows by applying Theorem 3.4. □

Considering once more a steady state-type spacetime, from Theorem 3.4 we
get the following consequence.

Corollary 3.6. Let ψ : Σn → M
n+1

be a complete spacelike hypersurface

immersed into a steady state-type spacetime M
n+1

= −R ×et M
n whose fiber

Mn has nonpositive Ricci curvature. Suppose that Σn is bounded away from



50 R. ANTONIA, H. F. DE LIMA, AND M. S. SANTOS

the future infinity of M
n+1

. If supΣH < +∞, H2 ≥ H > 0 and hypothesis

(3.2) is satisfied, then Σn is a slice of M
n+1

.

When 2 ≤ r ≤ n− 1, we will assume that the Riemannian fiber of the GRW
spacetime has constant sectional curvature. In this setting, we will use Lemma
2.3 to guarantee the ellipticity of the operator Lr.

Theorem 3.7. Let ψ : Σn → M
n+1

be a complete spacelike hypersurface

immersed into a GRW spacetime M
n+1

= −I ×f M
n whose fiber Mn has

constant sectional curvature κ satisfying the following curvature constraint

(3.10) κ ≤ inf
I
(ff ′′ − (f ′)2).

Suppose that Σn is bounded away from the future infinity of M
n+1

, Hr > 0
with supΣHr < +∞, and Hr+1 > 0 for some 2 ≤ r ≤ n − 1. Assume in
addition that f(h) attains a local minimum at some point p ∈ Σn such that
f ′(h(p)) ̸= 0. If hypothesis (3.2) is satisfied and

(3.11)
Hr+1

Hr
≥ f ′

f
(h),

then Σn is a slice of M
n+1

.

Proof. Since Mn has constant sectional curvature κ, from Lemma 2.4 jointly
with equation (2.9) of Lemma 2.5 and (3.1) we obtain

Lr(g(h)) = f(h)(n− r)

(
κ

f2(h)
− (log f)′′(h)

)
⟨Pr−1∇h,∇h⟩Θ

− cr(f
′(h)Hr + f(h)Hr+1Θ).(3.12)

On the other hand, since f(h) attains a local minimum at some point p ∈ Σn

such that f ′(h(p)) ̸= 0, Lemma 2.3 guarantees that p is an elliptic point of Σn.
So, using the assumption Hr+1 > 0, from Lemma 2.2 we have that the operator
Lj is elliptic or, equivalently, Pj is positive definite for all 1 ≤ j ≤ r.

Thus, taking into account curvature constraint (3.10) and that Θ ≤ −1,
from (3.12) we obtain

Lr(g(h)) ≥
1

f(h)
(n− r)

(
(ff ′′ − (f ′)2)(h)− κ

)
⟨Pr−1∇h,∇h⟩

+ cr(f(h)Hr+1 − f ′(h)Hr)

≥ crf(h)Hr

(
Hr+1

Hr
− f ′

f
(h)

)
.(3.13)

Hence, from inequalities (3.11) and (3.13) we get that Lr(g(h)) ≥ 0 on Σn.
Moreover, from hypotheses supΣHr < +∞ and (3.2), we have that Σn is Lr-
parabolic. Therefore, since Σn is bounded away from the future infinity of

M
n+1

, we conclude that Σn must be a slice of M
n+1

. □
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In the special case when the warping function is given by f ≡ 1, that is,

M
n+1

= −I ×Mn is a static GRW spacetime, we can reason as in the proof of
Theorem 3.7 (but replacing the hypothesis f ′ ̸= 0 by the existence of an elliptic
point) to get the following nonexistence result:

Corollary 3.8. Let M
n+1

= −I ×Mn be a static GRW spacetime whose fiber
Mn has constant sectional curvature κ ≤ 0. There is no complete spacelike

hypersurface ψ : Σn → M
n+1

bounded away from the future infinity of M
n+1

such that, for some 2 ≤ r ≤ n − 1, Hr > 0 with supΣHr < +∞, Hr+1 > 0,
having an elliptic point and satisfying hypothesis (3.2).

Proof. Let us suppose by contradiction the existence of such a spacelike hyper-
surface. From Lemma 2.4 jointly with equation (2.9) of Lemma 2.5 and (3.1)
we obtain

(3.14) Lr(h) = ((n− r)κ⟨Pr−1∇h,∇h⟩ − crHr+1)Θ.

Thus, since κ ≤ 0, Θ ≤ −1 and taking into account the existence of an
elliptic point jointly with Hr+1 > 0, from Lemma 2.2 and (3.14) we get that
Lr(h) ≥ 0 on Σn. Moreover, from hypotheses supΣHr < +∞ and (3.2), we
have that Σn is Lr-parabolic. Therefore, since Σn is bounded away from the

future infinity ofM
n+1

, we conclude that Σn must be a slice ofM
n+1

. However,

since M
n+1

= −I ×Mn is a static GRW spacetime, each slice has identically
zero higher order mean curvatures, contradicting the hypotheses that Hr > 0
and Hr+1 > 0. □

Proceeding, we will consider also the case when the spacelike hypersurface is
bounded away from the past infinity of a GRW spacetime whose Riemannian
fiber has constant sectional curvature obeying a curvature constraint which
corresponds to the so-called null convergence condition (NCC). For more details
concerning the NCC, see [26].

Theorem 3.9. Let ψ : Σn → M
n+1

be a complete spacelike hypersurface

immersed into a GRW spacetime M
n+1

= −I ×f M
n whose fiber Mn has

constant sectional curvature κ satisfying the NCC

(3.15) κ ≥ sup
I
(ff ′′ − (f ′)2).

Suppose that Σn is bounded away from the past infinity of M
n+1

, Hr−1 > 0
and Hr > 0 with supΣHr < +∞ for some 2 ≤ r ≤ n− 1. Assume in addition
that the sectional curvature of Σn, KΣ, is such that

(3.16) KΣ ≤ f ′′

f
(h).

If hypothesis (3.2) is satisfied and

(3.17)
Hr+1

Hr
≤ − 1

Θ

f ′

f
(h),



52 R. ANTONIA, H. F. DE LIMA, AND M. S. SANTOS

then Σn is a slice of M
n+1

.

Proof. We define a self-adjoint operator Pr−1 : X(Σn) → X(Σn) by

Pr−1 = Hr−1Pr−1.

For each p ∈ Σn, we take a local orthonormal frame {e1, . . . , en} such that
Aei = λiei. From (2.3) we have that

Pr−1ei = (−1)r−1
∑

i1<···<ir−1,ij ̸=i

λi1 · · ·λir−1
ei.

Thus, for any i ∈ {1, . . . , n}, we get

⟨Pr−1ei, ei⟩ =
(

n

r − 1

)−1 ∑
i1<···<ir−1,ij ̸=i,j1<···<jr−1

(λi1λj1) · · · (λir−1
λjr−1

).

On the other hand, from Gauss equation we have that

(3.18) KΣ(ei, ej) = K(ei, ej)− λiλj ,

where KΣ and K are the sectional curvatures of Σn and M
n+1

, respectively.
With a straightforward computation using a general relationship between

the curvature tensor of a warped product and the curvature tensor of its base
and its fiber (cf. Proposition 7.42 of [27]; see also equation (6.6) of [6]) we
obtain that

R(U, V )W = RMn(U∗, V ∗)W ∗ + ((log f)′(h))2(⟨U,W ⟩V − ⟨V,W ⟩U)

− (log f)′′(h)⟨W,∂t⟩(⟨U, ∂t⟩V − ⟨V, ∂t⟩U)

− (log f)′′(h)(⟨U,W ⟩⟨V, ∂t⟩ − ⟨U, ∂t⟩⟨V,W ⟩)∂t(3.19)

for arbitrary vector fields U, V,W in M
n+1

, where U∗ = (πMn)∗U = U +
⟨U, ∂t⟩∂t. Then, for an orthonormal basis {X,Y } of an arbitrary 2-plane tan-
gent to Σn, equation (3.19) gives

K(X,Y ) =
1

f2(h)
KM (X∗, Y ∗)|X∗ ∧ Y ∗|2

+ ((log f)′(h))2(⟨X,X⟩⟨Y, Y ⟩ − ⟨Y,X⟩⟨X,Y ⟩)
− (log f)′′(h)⟨X, ∂t⟩(⟨X, ∂t⟩⟨Y, Y ⟩ − ⟨Y, ∂t⟩⟨X,Y ⟩)
− (log f)′′(h)(⟨X,X⟩⟨Y, ∂t⟩ − ⟨X, ∂t⟩⟨Y,X⟩)⟨∂t, Y ⟩

=
1

f2(h)
KM (X∗, Y ∗)|X∗ ∧ Y ∗|2 + ((log f)′(h))2

− (log f)′′(h)(⟨X, ∂t⟩2 + ⟨Y, ∂t⟩2).(3.20)

Since ∇h = −∂⊤t = −∂t −ΘN , we have that

⟨X, ∂t⟩2 = ⟨X,−∇h−ΘN⟩2 = ⟨X,∇h⟩2.(3.21)
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Moreover,

|X∗ ∧ Y ∗|2 = |X∗|2|Y ∗|2 − ⟨X∗, Y ∗⟩2

= ⟨X∗, X∗⟩⟨Y ∗, Y ∗⟩ − ⟨X∗, Y ∗⟩2

= (1 + ⟨X, ∂t⟩2)(1 + ⟨Y, ∂t⟩2)− ⟨X, ∂t⟩2⟨Y, ∂t⟩2

= 1 + ⟨X, ∂t⟩2 + ⟨Y, ∂t⟩2

= 1 + ⟨X,∇h⟩2 + ⟨Y,∇h⟩2.(3.22)

Consequently, inserting (3.21) and (3.22) into (3.20) we get

K(X,Y ) =
1

f2(h)
KM (X∗, Y ∗)(1 + ⟨X,∇h⟩2 + ⟨Y,∇h⟩2) + ((log f)′(h))2

− (log f)′′(h)(⟨X,∇h⟩2 + ⟨Y,∇h⟩2)

=
1

f2(h)
KM (X∗, Y ∗) + ((log f)′(h))2

+

(
1

f2(h)
KM (X∗, Y ∗)− (log f)′′(h)

)
(⟨X,∇h⟩2 + ⟨Y,∇h⟩2)

=
1

f2(h)
KM (X∗, Y ∗) +

(
f ′

f
(h)

)2

+
1

f2(h)
(KM (X∗, Y ∗)−f(h)f ′′(h)+(f ′(h))2)(⟨X,∇h⟩2+⟨Y,∇h⟩2).(3.23)

Since we are assuming the NCC (3.15), from (3.23) we deduce the following
inequality

K(X,Y ) ≥ f ′′

f
(h).(3.24)

Thus, from (3.18) and (3.24) we obtain

(3.25) λiλj = K(ei, ej)−KΣ(ei, ej) ≥
f ′′

f
(h)−KΣ(ei, ej).

Consequently, from (3.16) and (3.25) we have λiλj ≥ 0 for all i, j ∈ {1, . . . , n},
with i ̸= j. Hence,

⟨Pr−1ei, ei⟩ =
(

n

r − 1

)−1 ∑
(λj1λi1) · · · (λjr−1

λir−1
) ≥ 0.(3.26)

So, from (3.26) we conclude that Pr−1 is positive semi-definite. Thus, since
Hr−1 and Hr are positive, Θ ≤ −1 and taking into account that (3.15) is
satisfied, from (3.12) we obtain

Lr(g(h)) = f(h)(n− r)

(
κ

f2(h)
− (log f)′′(h)

)
1

Hr−1
⟨Pr−1∇h,∇h⟩Θ

− cr(f
′(h)Hr + f(h)Hr+1Θ)
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≤ − crf(h)HrΘ

(
Hr+1

Hr
+

1

Θ

f ′

f
(h)

)
.(3.27)

Hence, considering inequality (3.17) into (3.27) we get that Lr(g(h)) ≤ 0
on Σn. Moreover, hypotheses supΣHr < +∞ and (3.2) assure that Σn is Lr-

parabolic. Therefore, since Σn is bounded away from the past infinity ofM
n+1

,

we conclude that Σn must be a slice of M
n+1

. □

Remark 3.10. Concerning Theorem 3.9, we observe that when Σn has an ellip-
tic point, hypothesis (3.16) can be dropped. Furthermore, we point out that
inequality (3.17) was already used in Theorem 4 of [16] to obtain an extension
of Theorem 3.7 in [7] and Theorem 4.1 in [29].

3.3. Rigidity and nonexistence of two-sided hypersurfaces

Similarly to the case of spacelike hypersurfaces in GRW spacetimes, in this
subsection we will establish rigidity and nonexistence results concerning com-
plete two-sided hypersurfaces immersed in a Riemannian warped product. We
recall that a hypersurface is said to be two-sided if its normal bundle is trivial,
that is, there is on it a globally defined unit normal vector field N .

Theorem 3.11. Let ψ : Σn → M
n+1

be a complete two-sided hypersurface

immersed into a Riemannian warped product M
n+1

= I ×f M
n. Suppose that

Σn is bounded away from the future infinity of M
n+1

and that −1 ≤ Θ ≤ 0. If
hypothesis (3.2) is satisfied and

(3.28) 0 < H ≤ f ′

f
(h),

then Σn is a slice of M
n+1

.

Proof. Taking into account that H > 0 and −1 ≤ Θ ≤ 0, from Lemma 2.4
jointly with (3.28) we obtain that

(3.29) L0(g(h)) = n(f ′(h) + f(h)HΘ) ≥ nf(h)

(
f ′

f
(h)−H

)
.

Hence, using inequality (3.28) in (3.29), we get that L0(g(h)) ≥ 0. Moreover,
by hypothesis (3.2) we have that Σn is L0-parabolic. So, since Σn is bounded

away from the future infinity of M
n+1

, we obtain that g(h) is constant on Σn

and, therefore, Σn is a slice of M
n+1

. □

When the warping function f is either exponential or hyperbolic cosine,
following the terminology introduced by [31], the corresponding warped product
R ×et M

n or R ×cosh t M
n has been referred to as a pseudo-hyperbolic space.

Tashiro’s terminology is due to the fact that with suitable choices of the fiber
Mn we obtain warped products which are isometric to the hyperbolic space.
For more details about these spaces see, for instance, [9, 10, 24, 25]. In this
context, we get the following applications of Theorem 3.11.
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Corollary 3.12. Let ψ : Σn → M
n+1

be a complete two-sided hypersurface

immersed into a pseudo-hyperbolic space M
n+1

= R×et M
n. Suppose that Σn

is bounded away from the future infinity of M
n+1

and that −1 ≤ Θ ≤ 0. If

hypothesis (3.2) is satisfied and 0 < H ≤ 1, then Σn is a slice of M
n+1

.

Corollary 3.13. Let ψ : Σn → M
n+1

be a complete two-sided hypersurface

immersed into a pseudo-hyperbolic space M
n+1

= R ×cosh t M
n. Suppose that

Σn is bounded away from the future infinity of M
n+1

and that −1 ≤ Θ ≤ 0. If

hypothesis (3.2) is satisfied and 0 < H ≤ tanh(h), then Σn is a slice of M
n+1

.

In our next result, we will suppose that the ambient space obeys a suitable
curvature constraint which is the opposite of that assumed in the results of [25].

Theorem 3.14. Let ψ : Σn → M
n+1

be a complete two-sided hypersurface

immersed into a Riemannian warped product M
n+1

= I ×f M
n, which obeys

the following curvature constraint

(3.30) RicM ≥ (n− 1) sup
I
((f ′)2 − ff ′′)⟨ , ⟩M ,

where RicM stands for the Ricci tensor of Mn. Suppose that Σn is bounded

away from the future infinity of M
n+1

and that −1 ≤ Θ ≤ 0. If hypothesis
(3.2) is satisfied, H > 0 with supΣH < +∞, H2 > 0 and

(3.31)
H2

H
≤ f ′

f
(h),

then Σn is a slice of M
n+1

.

Proof. From Lemma 2.4 and equation (2.8) of Lemma 2.5 we obtain that

L1(g(h)) = f(h)(−RicM (N∗, N∗)− (n− 1)(log f)′′(h)|∇h|2)Θ
+ c1(f

′(h)H + f(h)H2Θ),(3.32)

where N∗ = N −Θ∂t.
Taking into account that |N∗|2M = 1

f2(h) |∇h|
2, using curvature constraint

(3.30) we obtain

(3.33) (n− 1)

(
(f ′)2 − ff ′′

f2

)
(h)|∇h|2 − RicM (N∗, N∗) ≤ 0.

Thus, since we are assuming −1 ≤ Θ ≤ 0, considering (3.33) into (3.32) we get

L1(g(h)) ≥ c1f(h)H

(
f ′

f
(h)− H2

H

)
.

Hence, using hypothesis (3.31) we reach at L1(g(h)) ≥ 0. Moreover, since
Lemma 2.1 gives that P1 is positive definite, we can apply Proposition 3.1 to
guarantee that Σn is L1-parabolic. So, since Σn is bounded away from the
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future infinity of M
n+1

, we get that the function g(h) is constant. Therefore,

we conclude that Σn must be a slice of M
n+1

. □

We can reason as in the proof of Corollary 3.5, obtaining the following
consequence of Theorem 3.14:

Corollary 3.15. Let ψ : Σn → M
n+1

be a complete two-sided hypersurface

immersed into an Einstein warped product M
n+1

= I ×f M
n. Suppose that

Σn is bounded away from the future infinity of M
n+1

and that −1 ≤ Θ ≤ 0.
If H > 0 with supΣH < +∞, H2 > 0 and hypotheses (3.2) and (3.31) are

satisfied, then Σn is a slice of M
n+1

.

When the ambient is a pseudo-hyperbolic space, Theorem 3.14 leads us to
the following applications:

Corollary 3.16. Let ψ : Σn → M
n+1

be a complete two-sided hypersurface

immersed into a pseudo-hyperbolic space M
n+1

= R ×et M
n whose fiber Mn

has nonnegative Ricci curvature. Suppose that Σn is bounded away from the

future infinity of M
n+1

and that −1 ≤ Θ ≤ 0. If hypothesis (3.2) is satisfied,

H > 0 with supΣH < +∞, H2 > 0 and H2

H ≤ 1, then Σn is a slice of M
n+1

.

Corollary 3.17. Let ψ : Σn → M
n+1

be a complete two-sided hypersurface

immersed into a pseudo-hyperbolic space M
n+1

= R ×cosh t M
n whose Ricci

tensor of the fiber Mn is such that RicM ≥ −(n − 1)⟨ , ⟩M . Suppose that Σn

is bounded away from the future infinity of M
n+1

and that −1 ≤ Θ ≤ 0. If
hypothesis (3.2) is satisfied, H > 0 with supΣH < +∞, H2 > 0 and H2

H ≤
tanh(h), then Σn is a slice of M

n+1
.

In our next results, we deal with higher order mean curvatures.

Theorem 3.18. Let ψ : Σn → M
n+1

be a complete two-sided hypersurface

immersed into a Riemannian warped product M
n+1

= I ×f M
n whose fiber

Mn has constant sectional curvature κ and it obeys the curvature constraint

(3.34) κ ≥ sup
I
((f ′)2 − ff ′′).

Suppose that Σn is bounded away from the future infinity ofM
n+1

, −1 ≤ Θ ≤ 0
and that the sectional curvature of Σn, KΣ, is such that

(3.35) KΣ ≥ 1

f2(h)
(κ− (f ′(h))2).

If hypothesis (3.2) is satisfied, Hr−1 > 0, Hr > 0 with supΣHr < +∞, and

(3.36)
Hr+1

Hr
≤ f ′

f
(h)

for some 2 ≤ r ≤ n− 1, then Σn is a slice of M
n+1

.
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Proof. Since the fiberMn has constant sectional curvature κ, from (3.1) jointly
with Lemma 2.4 and equation (2.9) of Lemma 2.5 we obtain

Lr(g(h)) = − (n− r)f(h)

(
κ

f2(h)
+ (log f)′′(h)

)
⟨Pr−1∇h,∇h⟩Θ

+ cr(f
′(h)Hr + f(h)Hr+1Θ).(3.37)

On the other hand, as in the proof of Theorem 3.9, we will consider the
self-adjoint operator Pr−1 : X(Σn) → X(Σn) defined by

Pr−1 = Hr−1Pr−1.

For each p ∈ Σn, we take a local orthonormal frame {e1, . . . , en} such that
Aei = λiei. From (2.3) we have that Pr−1ei =

∑
i1<···<ir−1,ij ̸=i λi1 · · ·λir−1 .

Thus, for any i ∈ {1, . . . , n}, we get

⟨Pr−1ei, ei⟩ =
(

n

r − 1

)−1 ∑
i1<···<ir−1,ij ̸=i,j1<···<jr−1

(λi1λj1) · · · (λir−1
λjr−1

).

From Gauss equation, we have that

KΣ(ei, ej) = K(ei, ej) + λiλj .

Moreover, using once more Proposition 7.42 of [27] we get

R(U, V )W = RMn(U∗, V ∗)W ∗ − ((log f)′(h))2(⟨U,W ⟩V − ⟨V,W ⟩U)

− (log f)′′(h)⟨W,∂t⟩(⟨U, ∂t⟩V − ⟨V, ∂t⟩U)

− (log f)′′(h)(⟨U,W ⟩⟨V, ∂t⟩ − ⟨U, ∂t⟩⟨V,W ⟩)∂t

for arbitrary vector fields U, V,W in M
n+1

, where U∗ = (πMn)∗U = U −
⟨U, ∂t⟩∂t.

Thus, for an orthonormal basis {X,Y } we find that

K(X,Y ) =
1

f2(h)
KM (X∗, Y ∗)|X∗ ∧ Y ∗|2

− ((log f)′(h))2 − (log f)′′(h)(⟨X,∇h⟩2 + ⟨Y,∇h⟩2).

Since that |X∗ ∧ Y ∗|2 = 1− ⟨X,∇h⟩2 − ⟨Y,∇h⟩2, we get

K(X,Y ) =
1

f2(h)
KM (X∗, Y ∗)(1− (⟨X,∇h⟩2 + ⟨Y,∇h⟩2))

− ((log f)′(h))2 − (log f)′′(h)(⟨X,∇h⟩2 + ⟨Y,∇h⟩2)

=
1

f2(h)
KM (X∗, Y ∗)− ((log f)′(h))2

−
(

1

f2(h)
KM (X∗, Y ∗) + (log f)′′(h)

)
(⟨X,∇h⟩2 + ⟨Y,∇h⟩2)

=
1

f2(h)
KM (X∗, Y ∗)−

(
f ′

f
(h)

)2
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−
(

1

f2(h)
KM (X∗, Y ∗) +

ff ′′ − (f ′)2

f2
(h)

)
(⟨X,∇h⟩2 + ⟨Y,∇h⟩2).

We also note that

λiλj = KΣ(ei, ej)−K(ei, ej)

= KΣ(ei, ej) +

(
f ′

f
(h)

)2

− 1

f2(h)
KM (X∗, Y ∗)

+
1

f2(h)
(KM (X∗, Y ∗) + (ff ′′ − (f ′)2)(h))(⟨X,∇h⟩2 + ⟨Y,∇h⟩2).

Then, taking into account the curvature constraint (3.34) and inequality
(3.35), we get λiλj ≥ 0 for all i, j ∈ {1, . . . , n}, with i ̸= j. So, ⟨Pr−1ei, ei⟩ ≥ 0,
and Pr−1 is positive semi-definite. Thus, taking into account that Hr−1 and
Hr are positive and −1 ≤ Θ ≤ 0, from (3.34) and (3.37) we get

Lr(g(h)) = − (n− r)f(h)

(
κ

f2(h)
+ (log f)′′(h)

)
1

Hr−1
⟨Pr−1∇h,∇h⟩Θ

+ cr(f
′(h)Hr + f(h)Hr+1Θ)

≥ crf(h)Hr

(
f ′

f
(h)− Hr+1

Hr

)
.(3.38)

Hence, considering (3.36) into (3.38) we conclude that Lr(g(h)) ≥ 0 on Σn.
Consequently, since we are assuming that Σn is bounded away from the future

infinity of M
n+1

, we can apply Proposition 3.1 to obtain that h is constant on

Σn. Therefore, Σn must be a slice of M
n+1

. □

From Theorem 3.18 we get the following nonexistence result:

Corollary 3.19. Let M
n+1

= I×Mn be a Riemannian warped product whose
fiber Mn has constant nonnegative sectional curvature κ. There is no complete

two-sided hypersurface ψ : Σn → M
n+1

bounded away from the future infinity

of M
n+1

, with −1 ≤ Θ ≤ 0, satisfying hypothesis (3.2) and such that KΣ ≥ κ,
Hr−1 > 0, Hr > 0 with supΣHr < +∞ and Hr+1 ≤ 0 for some 2 ≤ r ≤ n− 1.

Related to the higher order mean curvatures, we also establish the following
result:

Theorem 3.20. Let ψ : Σn → M
n+1

be a complete two-sided hypersurface

immersed into a Riemannian warped product M
n+1

= I ×f M
n whose fiber

Mn has constant sectional curvature κ satisfying

(3.39) κ ≤ inf
I
((f ′)2 − ff ′′).

Suppose that Σn is bounded away from the past infinity of M
n+1

and that
−1 ≤ Θ < 0. Assume in addition that f(h) attains a local maximum at some
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point p ∈ Σn such that f ′(h(p)) ̸= 0. If hypothesis (3.2) is satisfied, Hr > 0
with supΣHr < +∞, Hr+1 > 0 and

(3.40)
Hr+1

Hr
≥ − 1

Θ

f ′

f
(h)

for some 2 ≤ r ≤ n− 1, then Σn is a slice of M
n+1

.

Proof. Since we are assuming that f(h) attains a local maximum at some point
p ∈ Σn such that f ′(h(p)) ̸= 0, Lemma 2.3 guarantees that p is an elliptic point
of Σn. So, using the assumption Hr+1 > 0, from Lemma 2.2 the operator Lj is
elliptic or, equivalently, Pj is positive definite for all 1 ≤ j ≤ r. Thus, taking
into account curvature constraint (3.39) and since −1 ≤ Θ < 0, from (3.37) we
obtain

Lr(g(h)) ≤ crf(h)HrΘ

(
Hr+1

Hr
+

1

Θ

f ′

f
(h)

)
.

Hence, from hypothesis (3.40) we have that Lr(g(h)) ≤ 0 on Σn. Therefore,

since Σn is bounded away from the past infinity of M
n+1

, we can apply once

more Proposition 3.1 to conclude that Σn must be a slice of M
n+1

. □

3.4. Applications to entire graphs

Let Ω ⊆ Mn be a connected domain of Mn. A (vertical) graph over Ω is
determined by a smooth function u ∈ C∞(Ω) and it is given by

Σ(u) = {(u(x), x) : x ∈ Ω} ⊂ ϵI ×f M
n.

The metric induced on Ω from the metric on the ambient space via Σn(u) is

(3.41) ⟨ , ⟩ = ϵdu2 + f2(u)⟨ , ⟩M .

We observe that for a graph Σ(u), its height function h is nothing but the
function u seen as a function on Σ(u). Therefore, in what follows, Du stands
for the gradient of u, as a function on Mn, while ∇u = ∇h stands for the
gradient of the height function, as a function on Σ(u).

The graph is said to be entire if Ω = Mn. It can be easily seen that in
the case ϵ = 1, when the function f(u) is bounded on Mn, the entire graph
Σ(u) is complete. In particular, this occurs when Σ(u) lies between two slices
of I ×f M

n. In the case ϵ = −1, a graph Σ(u) is a spacelike hypersurface if
and only if |Du|2Mn < f2(u), where |Du|Mn stands for the norm of Du with
respect to the metric ⟨ , ⟩M in Ω. From Lemma 3.1 of [14], in the case where
Mn is a simply connected manifold, every complete spacelike hypersurface Σn

in −I ×f M
n such that the warping function f is bounded on Σn is an en-

tire spacelike graph in such space. In particular, this happens for complete
spacelike hypersurfaces contained in a timelike bounded region. However, in
contrast to the case of graphs into a Riemannian space, an entire spacelike
graph in a complete GRW spacetime is not necessarily complete, in the sense
that the induced Riemannian metric (3.41) is not necessarily complete on Mn.
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For instance, Albujer constructed explicit examples of noncomplete entire max-
imal spacelike graphs (that is, whose mean curvature is identically zero) in the
Lorentzian product space −R×H2 (see Section 3 of [1]).

Being Σ(u) ⊂ ϵI×fM
n an entire graph, its orientation N which corresponds

to the choices made in Subsections 3.2 and 3.3 is given by

(3.42) N =
f(u)

W (u)

(
−ϵ∂t +

1

f2(u)
Du

)
,

where W (u) :=
√
f2(u) + ϵ|Du|2Mn .

When M
n+1

= −I×f M
n is a GRW spacetime, we can restate Theorem 3.7

in the context of entire graphs as follows:

Corollary 3.21. Let M
n+1

= −I×fM
n be a GRW spacetime whose fiber Mn

has constant sectional curvature κ satisfying curvature constraint (3.10) and
let Σ(u) be an entire graph determined by a bounded function u ∈ C∞(M) such
that, for some 2 ≤ r ≤ n − 1, Hr > 0 with supM Hr < +∞ and Hr+1 > 0.
Suppose that f(u) attains a local minimum at some point x ∈ Mn such that
f ′(u(x)) ̸= 0 and that |Du|2M ≤ αf2(u) for some constant 0 < α < 1. If
hypothesis (3.2) is satisfied by Σ(u) and

(3.43)
Hr+1

Hr
≥ f ′

f
(u),

then u ≡ t0 for some t0 ∈ I.

Proof. As in the beginning of the proof of Corollary 5.1 in [7], our constraint
on |Du|M guarantees that Σ(u) is complete. Consequently, since we are also
assuming that hypotheses (3.2) and (3.43) are satisfied, we can apply Theorem
3.7 to conclude the result. □

Taking into account (3.42), it is not difficult to see that we can also refor-
mulate Theorem 3.9 in the context of entire graphs as follows:

Corollary 3.22. Let M
n+1

= −I×fM
n be a GRW spacetime whose fiber Mn

has constant sectional curvature κ satisfying the NCC (3.15) and let Σ(u) be
an entire graph determined by a bounded function u ∈ C∞(M) such that, for
some 2 ≤ r ≤ n− 1, Hr−1 > 0 and Hr > 0 with supΣHr < +∞. Suppose that
the sectional curvature of Σ(u) satisfies (3.16) and that |Du|2M ≤ αf2(u) for
some constant 0 < α < 1. If hypothesis (3.2) is satisfied by Σ(u) and

Hr+1

Hr
≤ f ′

f2
(u)W (u),

then u ≡ t0 for some t0 ∈ I.

When the ambient space is a Riemannian warped product, it is not difficult
to verify that all results in Subsection 3.3 can be also rewritten for the context
of entire graphs. In particular, we quote the following nonparametric versions
of Theorems 3.18 and 3.20:
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Corollary 3.23. LetM
n+1

= I×fM
n be a Riemannian warped product whose

fiber Mn has constant sectional curvature κ obeying the curvature constraint
(3.34) and let be Σ(u) be an entire graph determined by a bounded function
u ∈ C∞(M) such that, for some 2 ≤ r ≤ n − 1, Hr−1 > 0, Hr > 0 with
supΣHr < +∞. Suppose that the sectional curvature of Σ(u) satisfies (3.35)
and that |Du|M < +∞. If hypothesis (3.2) is satisfied by Σ(u) and

Hr+1

Hr
≤ f ′

f
(u),

then u ≡ t0 for some t0 ∈ I.

Corollary 3.24. LetM
n+1

= I×fM
n be a Riemannian warped product whose

fiber Mn has constant sectional curvature κ obeying the curvature constraint
(3.39) and let be Σ(u) be an entire graph determined by a bounded function
u ∈ C∞(M) such that, for some 2 ≤ r ≤ n − 1, Hr > 0 with supΣHr < +∞
and Hr+1 > 0. Suppose that f(u) attains a local maximum at some point
x ∈ Mn such that f ′(u(x)) ̸= 0 and that |Du|M < +∞. If hypothesis (3.2) is
satisfied by Σ(u) and

Hr+1

Hr
≥ f ′

f2
(u)W (u),

then u ≡ t0 for some t0 ∈ I.
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[13] L. J. Aĺıas, P. Mastrolia, and M. Rigoli, Maximum principles and geometric applica-
tions, Springer Monographs in Mathematics, Springer, Cham, 2016. https://doi.org/

10.1007/978-3-319-24337-5
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[15] L. J. Aĺıas, A. Romero, and M. Sánchez, Spacelike hypersurfaces of constant mean
curvature and Calabi-Bernstein type problems, Tohoku Math. J. (2) 49 (1997), no. 3,

337–345. https://doi.org/10.2748/tmj/1178225107
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