• Title/Summary/Keyword: WKB approximation

Search Result 18, Processing Time 0.023 seconds

Analysis of Dimension Dependent Threshold Voltage Roll-off for Nano Structure Double Gate FinFET (나노구조 이중게이트 FinFET의 크기변화에 따른 문턱전압이동 분석)

  • Jeong Hak-Gi;Lee Jae-Hyung;Joung Dong-Su
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.869-872
    • /
    • 2006
  • In this paper, the threshold voltage roll-off been analyzed for nano structure double gate FinFET. The analytical current model has been developed , including thermionic current and tunneling current models. The potential distribution by Poisson equation and carrier distribution by Maxwell-Boltzman statistics are used to calculate thermionic emission current, and WKB(Wentzel- framers-Brillouin) approximation to tunneling current. The threshold voltage roll-offs are obtained by simple adding two currents since two current is independent. The threshold voltage roll-off by this model are compared with those by two dimensional simulation and two values are good agreement. Since the tunneling current increases especially under channel length of 10nm, the threshold voltage roll-off Is very large. The channel and gate oxide thickness have to be fabricated as thin as possible to decrease this short channel effects and this process has to be developed.

  • PDF

Drain Induced Barrier Lowering(DIBL) SPICE Model for Sub-10 nm Low Doped Double Gate MOSFET (10 nm 이하 저도핑 DGMOSFET의 SPICE용 DIBL 모델)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.8
    • /
    • pp.1465-1470
    • /
    • 2017
  • In conventional MOSFETs, the silicon thickness is always larger than inversion layer, so that the drain induced barrier lowering (DIBL) is expressed as a function of oxide thickness and channel length regardless of silicon thickness. However, since the silicon thickness is fully depleted in the sub-10 nm low doped double gate (DG) MOSFET, the conventional SPICE model for DIBL is no longer available. Therefore, we propose a novel DIBL SPICE model for DGMOSFETs. In order to analyze this, a thermionic emission and the tunneling current was obtained by the potential and WKB approximation. As a result, it was found that the DIBL was proportional to the sum of the top and bottom oxide thicknesses and the square of the silicon thickness, and inversely proportional to the third power of the channel length. Particularly, static feedback coefficient of SPICE parameter can be used between 1 and 2 as a reasonable parameter.

Analysis of Dimension-Dependent Threshold Voltage Roll-off and DIBL for Nano Structure Double Gate FinFET (나노구조 이중게이트 FinFET의 크기변화에 따른 문턱전압이동 및 DIBL 분석)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.4
    • /
    • pp.760-765
    • /
    • 2007
  • In this paper, the threshold voltage roll-off and drain induced barrier lowering(DIBL) have been analyzed for nano structure double gate FinFET. The analytical current model has been developed, including thermionic current and tunneling current models. The potential distribution by Poisson equation and carrier distribution by Maxwell-Boltzman statistics were used to calculate thermionic omission current, and WKB(Wentzel- Kramers-Brillouin) approximation to tunneling current. The threshold voltage roll-offs are obtained by simple adding two currents since two current is independent. The threshold voltage roll-off by this model are compared with those by two dimensional simulation and two values are good agreement. Since the tunneling current increases especially under channel length of 10nm, the threshold voltage roll-off and DIBL are very large. The channel and gate oxide thickness have to be fabricated as thin as possible to decrease this short channel effects, and this process has to be developed.

Analysis of On-Off Voltage △Von-off in Sub-10 nm Junctionless Cylindrical Surrounding Gate MOSFET (10 nm 이하 무접합 원통형 MOSFET의 온-오프전압△Von-off에 대한 분석)

  • Jung, Hak-kee
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.29-34
    • /
    • 2019
  • We investigated on-off voltage ${\Delta}V_{on-off}$ of sub-10 nm JLCSG (Junctionless Cylindrical Surrounding Gate) MOSFET. The gate voltage was defined as ON voltage for the subthreshold current of $10^{-7}A$ and OFF voltage for the subthreshold current of $10^{-12}A$, and the difference between ON and OFF voltage was obtained. Since the tunneling current was not negligible at 10 nm or less, we observe the change of ${\Delta}V_{on-off}$ depending on the presence or absence of the tunneling current. For this purpose, the potential distribution in the channel was calculated using the Poisson equation and the tunneling current was calculated using the WKB approximation. As a result, it was found that ${\Delta}V_{on-off}$ was increased due to the tunneling current in JLCSG MOSFETs below 10 nm. Especially, it increased rapidly with channel lengths less than 8 nm and increased with increasing channel radius and oxide thickness.

Fabrication and Characterization of Ti:LiNbO_3$ Optical Waveguides (확산방식에 의한 Ti:LiNbO_3$ 광도파로의 제작 및 특성측정)

  • 손영성;강원구;갑상영;권영세
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.3
    • /
    • pp.343-351
    • /
    • 1988
  • Planar optical waveguides are fabricated on a Y-cut LiNbO3 single crystal substrate by Ti indiffusion method. From data measured by the bright M-line spectroscopy, refractive index profiles are reconstructed by WKB approximation method. Then, single strip, X-crossing strip, and Y-brinch strip optical waveguides are fabricated on X-cut LiNbO3 single crystal substrate, with waveguide patterns made by the laser beam direct writing method. And their near-field intensity profiles are observed after coupling the light to the waveguide edges.

  • PDF

Flows in a confined cylindrical container with differential rotating top and bottom disks (속도차를 갖는 두 회전판에 의해 유도되는 원통 내부 유동)

  • Park, Jun-Sang
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.487-490
    • /
    • 2008
  • A theoretical study is made of the flow in a confined cylindrical container with differential rotating top and bottom disks. Two kinds of theoretical solution for the azimuthal velocity were obtained: one is an exact solution of Bessel function type and the other is an approximate solution of exponential function type which comes from WKB approximation. Both theoretical solutions are shown to be self consistent with each other as well as a good agreement with previous studies. Moreover, in a range of relatively low Reynolds number, the obtained solution of Bessel function type shows better result than previous solutions.

  • PDF

Semi-analytical Modeling of Transition Metal Dichalcogenide (TMD)-based Tunneling Field-effect Transistors (TFETs)

  • Huh, In
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.368-372
    • /
    • 2016
  • In this paper, the physics-based analytical model of transition metal dichalcogenide (TMD)-based double-gate (DG) tunneling field-effect transistors (TFETs) is proposed. The proposed model is derived by using the two-dimensional (2-D) Landauer formula and the Wentzel-Kramers-Brillouin (WKB) approximation. For improving the accuracy, nonlinear and continuous lateral energy band profile is applied to the model. 2-D density of states (DOS) and two-band effective Hamiltonian for TMD materials are also used in order to consider the 2-D nature of TMD-based TFETs. The model is validated by using the tight-binding non-equilibrium Green's function (NEGF)-based quantum transport simulation in the case of monolayer molybdenum disulfide ($MoS_2$)-based TFETs.

  • PDF

Analysis of Flat-Band-Voltage Dependent Breakdown Voltage for 10 nm Double Gate MOSFET

  • Jung, Hakkee;Dimitrijev, Sima
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.1
    • /
    • pp.43-47
    • /
    • 2018
  • The existing modeling of avalanche dominated breakdown in double gate MOSFETs (DGMOSFETs) is not relevant for 10 nm gate lengths, because the avalanche mechanism does not occur when the channel length approaches the carrier scattering length. This paper focuses on the punch through mechanism to analyze the breakdown characteristics in 10 nm DGMOSFETs. The analysis is based on an analytical model for the thermionic-emission and tunneling currents, which is based on two-dimensional distributions of the electric potential, obtained from the Poisson equation, and the Wentzel-Kramers-Brillouin (WKB) approximation for the tunneling probability. The analysis shows that corresponding flat-band-voltage for fixed threshold voltage has a significant impact on the breakdown voltage. To investigate ambiguousness of number of dopants in channel, we compared breakdown voltages of high doping and undoped DGMOSFET and show undoped DGMOSFET is more realistic due to simple flat-band-voltage shift. Given that the flat-band-voltage is a process dependent parameter, the new model can be used to quantify the impact of process-parameter fluctuations on the breakdown voltage.