• 제목/요약/키워드: Volterra integral equation

검색결과 31건 처리시간 0.021초

A MIXED INTEGRAL EQUATION IN THE QUASI-STATIC DISPLACEMENT PROBLEM

  • Badr, Abdallah A.
    • Journal of applied mathematics & informatics
    • /
    • 제7권2호
    • /
    • pp.575-583
    • /
    • 2000
  • In this work, we solve the Fredholm-Volterra integral equation(FVIE) when the kernel takes a potential function form under given conditions. we represent this kernel in the Weber-sonin integral form.

FREDHOLM-VOLTERRA INTEGRAL EQUATION WITH SINGULAR KERNEL

  • Darwish, M.A.
    • Journal of applied mathematics & informatics
    • /
    • 제6권1호
    • /
    • pp.163-174
    • /
    • 1999
  • The purpose of this paper is to obtain the solution of Fredholm-Volterra integral equation with singular kernel in the space $L_2(-1, 1)\times C(0,T), 0 \leq t \leq T< \infty$, under certain conditions,. The numerical method is used to solve the Fredholm integral equation of the second kind with weak singular kernel using the Toeplitz matrices. Also the error estimate is computed and some numerical examples are computed using the MathCad package.

ON THE NUMERICAL SOLUTIONS OF INTEGRAL EQUATION OF MIXED TYPE

  • Abdou, Mohamed A.;Mohamed, Khamis I.
    • Journal of applied mathematics & informatics
    • /
    • 제12권1_2호
    • /
    • pp.165-182
    • /
    • 2003
  • Toeplitz matrix method and the product Nystrom method are described for mixed Fredholm-Volterra singular integral equation of the second kind with Carleman Kernel and logarithmic kernel. The results are compared with the exact solution of the integral equation. The error of each method is calculated.

THE RELIABLE MODIFIED OF LAPLACE ADOMIAN DECOMPOSITION METHOD TO SOLVE NONLINEAR INTERVAL VOLTERRA-FREDHOLM INTEGRAL EQUATIONS

  • Hamoud, Ahmed A.;Ghadle, Kirtiwant P.
    • Korean Journal of Mathematics
    • /
    • 제25권3호
    • /
    • pp.323-334
    • /
    • 2017
  • In this paper, we propose a combined form for solving nonlinear interval Volterra-Fredholm integral equations of the second kind based on the modifying Laplace Adomian decomposition method. We find the exact solutions of nonlinear interval Volterra-Fredholm integral equations with less computation as compared with standard decomposition method. Finally, an illustrative example has been solved to show the efficiency of the proposed method.

ON A DISCUSSION OF NONLINEAR INTEGRAL EQUATION OF TYPE VOLTERRA-HAMMERSTEIN

  • El-Borai, M.M.;Abdou, M.A.;El-Kojok, M.M.
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제15권1호
    • /
    • pp.1-17
    • /
    • 2008
  • Here, we consider the existence and uniqueness solution of nonlinear integral equation of the second kind of type Volterra-Hammerstein. Also, the normality and continuity of the integral operator are discussed. A numerical method is used to obtain a system of nonlinear integral equations in position. The solution is obtained, and many applications in one, two and three dimensionals are considered.

  • PDF

ON A SYSTEM OF NONLINEAR INTEGRAL EQUATION WITH HYSTERESIS

  • Darwish, M.A.
    • Journal of applied mathematics & informatics
    • /
    • 제6권2호
    • /
    • pp.407-416
    • /
    • 1999
  • In this paper we give some sufficient conditions for the existence and uniqueness of a continuous for the existence and uniqueness of a continuous slution of the system of Urysohn-Volterra equation with hysteresis.

NUMERICAL SOLUTION OF A CLASS OF TWO-DIMENSIONAL NONLINEAR VOLTERRA INTEGRAL EQUATIONS OF THE FIRST KIND

  • Tari, Abolfazl;Shahmorad, Sedaghat
    • Journal of applied mathematics & informatics
    • /
    • 제30권3_4호
    • /
    • pp.463-475
    • /
    • 2012
  • In this work, we investigate solving two-dimensional nonlinear Volterra integral equations of the first kind (2DNVIEF). Here we convert 2DNVIEF to the two-dimensional linear Volterra integral equations of the first kind (2DLVIEF) and then we solve it by using operational approach of the Tau method. But for solving the 2DLVIEF we convert it to an equivalent equation of the second kind and then by giving some theorems we formulate the operational Tau method with standard base for solving the equation of the second kind. Finally, some numerical examples are given to clarify the efficiency and accuracy of presented method.