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THE VOLTERRA-STIELTJES INTEGRAL EQUATION
AND THE OPERATOR-VALUED FUNCTION SPACE
INTEGRAL AS AN /£(L,, Ly) THEORY

Kun Sik Ryu

ABSTRACT. In this note, we will prove that the operator-valued func-
tion space integral as an operator from L, to Ly (1 < p < 2) for cer-
tain potential functionals satisfies a Volterra- Stieltjes integral equa-
tion.

1. Introduction and preliminaries

Cameron and Storvick introduced an operator-valued function space
integral in 1968 [3]. Johnson and Lapidus established the existence the-
orem of the operator-valued function space integral as an operator from
Ly(RY) to itself for certain functionals involving some Borel measures [8].
And in 1987, Lapidus proved that the integral satisfies the Schrodinger
wave equation [10].

In 1992, Chang and the author established the existence theorem of
the operator-valued function space integral as an operator from L, to
Ly (1 < p < 2) for certain functionals involving some Borel measures [4].
In this note, we will prove that the integral satisfies a Volterra-Stieltjes
integral equation.

Now some notations and facts which are needed in next section. In-
sofar as possible, we adopt the definitions and notations of [4].
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A. Let N be the set of all natural numbers and let R be the set of
all real numbers. Let C,C.. and C7 be the set of all complex numbers,
all complex numbers with positive real part and all non-zero complex
numbers with non-negative real parts, respectively. Let p be a function
on the set of all non-negative integers such that p(0) = 0 and p(n) =1
forn > 1.

B. Given a number p such that 1 < p < +00, p and p’ will be always
related by % + % =1 If1<p<2isgiven, let a in (1,+00) be such

that @ = 32-. In our theorems, N will be a positive integer restricted

so that N < 2a Forl<p < 2, let 7 be a real number such that
<r<4oo. Andlet § =

2aN

C. For 1 < p < +oo, L, (RY) is the space of C — valued Borel
measurable functions 1) on RY such that | ¢ |P is integrable with respect
to Lebesgue measure. Let L£(L,, Ly) be the space of bounded linear
operators from L,(R") into L,(R"). For an operator T, T* is a Banach
adjoint of 7.

D. Let 1 <p < 2begiven. For Xin C7, ¢ in L,(R"Y), ¢ in R" and

a positive real number s, let

(1.1) (Crst)(©) = (¥ faw () exp(—2LEL) dmy(u)

where if N is odd we always choose A\~? with non-negative real part and
if ReX =0, the integral in (1.1) should be interpreted in the mean just
as in the theory of the L, Fourier transform. From [9], as a function
of A, Cy/s is analytic in C+, it is strong continuous in C7, and it is

in £(Lp, Ly) and || Cy/s ||< (2|7’:|s) . Moreover, C; , = C5/; where C},
means the adjoint operator of 5/, and ) is the conjugate of \. From
the Chapman-Kolmogorov theorem, CyoC,¢ = C),,% whenever the inte-

grals exist. And so we adopt just the notation as follows CyoloC, = C).,..

E. Let t > 0 be given. M(0,¢) will denote the space of all complex
Borel measures 7 on the interval (0,¢). Every measure n in M(0,t) has a
unique decomposition, 7 = .+ v into a continuous part p and a discrete
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part v = pr(STp, where (w,) is a summable sequence in C and 4y, is
p=1
the Dirac measure [12]. And M(0,t)* will denote the subset of M(0,t)
which satisfies the following conditions;
(a) If u is the continuous part of 7 in M(0,t)*, then the Radon-
Nikodym derivative dul ovists and is essentially bounded, where m is the

dm
Lebesgue measure on (0,t).

(b) fv = pr&p is the discrete part of 7 in M(0,t)*, then

p=1

x
)
_5_ | wp | 6,7° converges.

p=1
For p in M(0,t), we define a measure ji given by i(B) = u(B) for all
Borel subsets B of (a,b). Then for n = pu-+ préfp, =g+ Z WyOr,-

p=1 p=1

F. Let Cy[0,t] = Cp be the space of R~ —valued continuous func-
tions on [0,t] which vanish at 0. We consider Cy as equipped with
N —dimensional Wiener measure m,,. Let C[0,t] = C be the space of
RY —valued continuous functions on [0, .

G. For 1 < p < 2and nin M(0,t), let Lary([0,t] x RY) = Loy be
the space of all C—valued Borel measurable functions 6 on [0,] x RV
such that

1

(1.2) 16 lar= { Sy 1 005, ) I dim | (5)}" i fmite.

H. Let 1 < p < 2 be given and 6 be in L,(R"). From Lemma 1.3
in [9], the function My : Ly(RY) — L,(RY) defined by Mo(f) = f9,
is in £(Ly, L,) and | My ||<|| 8 |lo. Moreover, My = M. It will be
convenient to let 6(s) denote My, ) for 8 in Loy

Let 61,6y, 01 be in Ly(RY), ¢ in L,(RY) and 0 < 51 < 853 <
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.+ < 8y < t. From the Wiener integral formula [13],
(1.3)
/C 61 (2(5))05(2(52) - - B (& 5m0) (5 i ()

= [{Cijs 2 61(51) 0+ 0 Ciy(sr1=5m) © Im=1(5m-1) © C1/(spp=sm_) }¥ ] (0)-

I. Let 0 <k < 1begiven and mbein N. For 0 < 51 <sy<--- <

Sm < b,
// /{Sl—a J(s2—s1) - (b= sm)} " dsy - dsp,

_ a m~(m+1)k{P(1 )}m+1
r(m+(1-k)

where I is the gamma function.
Throughout this paper, this values is denoted by E(a,b;m, k).

J. Let 1 < p < 2begiven. Let F be a functional on C[0,t]. Given
A> 0,9 in L,(RY) and ¢ in RV, let

(1.5) [LEW)E) = fo, FO iz + YA a(t) + €) dmy ().

If for my~a.e. £ in RN, [L(F)Y)(€) exists in Ly(RY) and if the cor-
respondence ¢ — I,(F)y gives an element of £(L,, Ly), we say that
the operator-valued function space integral I)(F) exists for A. Sup-
pose there exists Ag (0 < Ap < +o0) such that I \(F) exists for all
0 < XA < X and there exists an L£(L,, Ly)—valued function which is
analytic in C,,, = C, N{z € C || z |< Ao} and agrees with I,(F’) on
(0, Xg), then this £(L,, Ly)—valued function is called the operator-valued
function. space integral of F' associated with A and in this case, we say
that I,(F) exists for A in C, ,. If I,(F) exists for A in C, ), and I,(F)
is strongly continuous in C}, = CyN{z€ C||z|< A}, we say that
IL\(F) exists for X in C}, . When X is purely imaginary, () is called
the (analytic) operator-valued Feynman integral of F'.
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It is mathematically convenient and physically natural to work with
the Banach adjoint I (F)* of I \(F) rather than with I(F) itself. Note
that I,(F)* depends on time ¢ both through the definition of F' and that
of I (F) in (1.5). We thus set, for A in C} and ¢ > 0,

(1.6) ' u(t) = L(F)".
n [4], Chang and the author proved the following facts.

THEOREM 1.1. Let1 < p < 2 be given, let n be in M(0,t)*, let 6 be
in Loy, and let 1 = 1+ v be the decomposition of 7 into its continuous
and discrete parts. Let ‘

(1.7) F(y) = exp {/(o,t) 0(s,y(s)) dn(s)} for y in C.

h
Suppose that v = préTp where we may assume that 0 < 71 < 7o <
p=1
- <1, <tand8(r,-),p=1,2,---,h, are essentially bounded. Then
the operator I\(F) exists for A in C7 and for all X in C7,

(1.9 ap=y Yy uow

| I
n=0 q2+ Y J1t-+ire1=90 Q £l
0+

2
x/ (LooLlo---Lh)dHu(s,'),
AQ(),"' % B e | {t =1

where for nonnegative integers qo, q1,* - ,qn and ji, Ja,"** , Ja+1,

Doy sghisn s (t)

= {(s1,52, " ,8¢) € (0 DO 10<s <8< <85 <71 < 8541
Lo < Sy K Tp <o < Th < Sjytjpt +]h+1

<o < Sjypetinn = S < t}

for (s1,82, " ;5g) € Doy gniiy--vinss @0d M € {0,1,---,h},

Lm B [G(Tm)]qm o C/\/(sj1+...+]~m+1-—Tm) o 0(3j1+-"+jm+1) o C’\/(sh+~'-+jm+2“sj;+--~+jm+1)

00 9(3j1+"'+jm+1) °© C'\/(Tm+1—3j1+»~~+jm+1)
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and the integral is the Bochner integral [5].
(We use the conventions 19 = 0, 7,41 = ¢ and [#()]® = 1, an identity
map on Ly(RY)). Moreover, for all A in C7,

(1.9) || L(F) |
lw] |q1 "'|'wh |Qh
<
2% OZ;_,, 2 @il gl
n=0 4 9 Jit+-+ipr1=00
x (go!)~" 1A @13 (go + R\
o o 0! B!

h
% {H I16(7, ) & 1l (7, -) IIﬁ("‘)} (esssupd| p | /dm)"/*"

I=1
1/2

h 2/7"
X (“ ¢ ”ar:u)qo Z { HE(TI, Tl+1;jl+1§7',6) }

Jit+tipi=g0 \ =0

REMARK 1.2. (1) In the inequality (1.9), we can show the conver-

gence of the summation by the essentially same method as in the proof
of Theorem 2 in [1].

(2) From (7], we have

(110) w(t)=L(F)=>_ > )

— e s —~ ql'
n=0 @+-+t4=n ji+-+jr1=qp
90 4R 20

J.

2. The main theorems

ql

q0 .
Lyo---Lio Lyd ] A(sy).
u=1

G0 1R T1 0 TRt 1 (t)

In this section, we will prove that u(t) = I}(F) satisfies a Volterra-
Stieltjes integral equation. '

For v in (73,t] and non-negative integers qo, q1,-* - , qn, J1, J2, - * - » Jast
such that g+ ---+go =n and j; + -+ + Joy1 = qo, We set
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(2'1) Ugo,q1, 1ghid1,92r " sdne1 (’U)

g0
= / LZOL;_lo---oL{)dH i(s:).
AII(),'" AR IRl (v) t=1

and

(2'2) Weo, g1, ,aniJ1,J2, b+ (v)
= / CX/(U—-S) © é(s) O Ugo,q1, ,Qh;jlyjz,'",jhﬂ(s) dﬂ(s)
Th
THEOREM 2.1. For v in (7;,t], we have

(2'3) Wag, g1, Gh3d1,92r " sdnel (v) = Ugo+1,g1, ghidnadze v+l (U)

Proof. Let v be in (73,t] and let go,qi,* - ,qn and Ji, 2, "~ , Jns1 be
given non-negative integers. Suppose k is the least number such that g;
is not a zero. Then

(2'4) Wyo,q1, 391,920 a1 ('U)

o [ 5
= / CX/(v-—squ) ° 0(8‘10+1) [/
Th A

qo0
(Lyo Ljyo---o L) ][ Als)] di(sus)

i=1

@ f[° 5
= / C:\/(”—sqoﬂ) ° 0(5404-1) [/
Th By sgpidte dpe (8gg+1)

C;\/(Tn—Sqo) 0 6(sq) © C’/_\/ (81 4+t +1—SGyHi i)

qor i e e (St 1)

© 0(5j1+j2+"'+jh) 0--+0 Cx/(sjl+j2+"'+jk+2—sj1+j2+"'+jk“-‘1)

: %
0 0(8j,4iptrtjs1) 0 Lyo Ly _y0-+-0Lg dH ﬁ(si)] di(Sg+1)

i=1
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(3 =
= / Cx/(-s09) © O(50+1)
Do, gty +1(0)
© C/_\/(Th—sqo) © Q(SQO) © C:\/(sjl+j2+"'+jh+1_sjl+j2+"'+jh)
° 9(8j1+j2+"'+jh) -0 C/_\/(sh+J‘2+---+J’k+2—37’1+J’2+..,+jk+1)
go+1
© 0(5j1+j2+"'+jk+1) oLjo Liqo---0 Lyd H ﬁ(sl)
=1
(4) go+1
@ (LioLi oo Li)d [] als)
Bgpt1,me gy id o g1 #1(0) i=1
(5

Ugo+1,1, ghidnodz, wdas1+1 (U) O

Steps (1) and (5) follow from the definitions of u,w in (2.1) and (2.2)
respectively. By the assumption, we have Step (2). Step (3) follows,
we know that the following two facts are equivalent;

(1) Sgo+1 isin (Th’ 'U) and (317 82,00 ,Sqo) is in Aqo,tIh'“ sGhiT1.32,+ sTh+1 (3q0+1)’

(2) (317 82y 5 8gp5 SQO+1) is in Aqo+1,111,'" WhsI1J2y dre1 1 (’U)
And so, by the D in section 2, we obtain Step (4).

THEOREM 2.2. The operator-valued function u satisfies the Volterra-
Stieltjes integral equation

(2.5) w(v) = C5/qnp,) © eZ0m) o u(7)
+/ C/(o-s) © 6(s) o u(s) dii(s)
T
for all v in (7, 1t).
Proof. For v in (13, t), let
(2.6) w(v) = fT: C3/(o-s) © 6(s) o u(s) d(s).
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Then

(2.7)

w(v)

DS

n=0 doF+ap=n jitdjpg=qo

2y Y ¥

n=0 o+ tah=n ji4--+jpi1=4p

(6)

The Volterra-Stieltjes integral equation

1 h

s (O Ty
ol gl

40+ 14y 20

X / C;\/(v—s) © 9_(3) O Ugy, g1, ,qnign d2s ,jh+1(s) dﬂ(s)
Th

gy ,gp 20
X Way,q1, gnifrdo, dnt (v)
o0
R=0 G0+FI=N G oot =
A Fne1=qo

1 h

TR .. e
q!- - !

X Ugy+1,q1, ,ahijrodzr dre1+1 (U)

o0 n q0 ' .
>y X oy ¥y EEE
| I |
n=0 go=0 1+ -+gr=n—qo jr+1=0 j1+-+Jjr=qo—Jjr+1 @ n
X Ugot+1,q1, \Ghid1,d2, dhe1+1 ('U)
oo n* % —
Yy oy y mem
I.oo.gp!
. . - . 1! B!
n*=1gg=1 g1+ +qp=n*—gq5 jy ., =0 i ++ir=qg—J5 g g
X Ugs g1, sgnidvia iy (V)
o n* QE —q ——q
)S) SEED DD SENED DR~ L
qi!- - g

=0 gg=1 q1++aqn=n*~q§ jj ., =0 j1+-+jr=q5— 3},

X Ug g1, amidndar Jhay (v).
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Step (1) follows from Theorem 1.1 and the the bounded convergence
theorem. From (2,2), we have Step (2). By Theorem 2.1, we obtain
Step (3). Step (4) is trivial. Putting n* = n+ 1,¢) = ¢ + 1 and
Jhs1 = Jasr + 1, we have n* — g5 = n — qo, and g — jiy; = do — jass, and
so Step (5) holds. If n* = 0, then ¢f = 0, which is impossible, so we
have Step (6). Thus, we have

(o]

(2.8) u(v) —w(v) = Z Z Z

n=0 go+--+gp=nj1++ih=q0

o - Wt
ol g
X Ugg,gr,o gnidvadar im0 (V)

Moreover, AQO,(IL‘“»QMjl,”'yjhuo(v) = Aqo:(h,"'»Qh§j1,"’yjh(7-h) and on
AQO‘QL“‘,Q}.;J&,"',jh,O v)s

(29) Ugo,q1,++ gty ‘jh,O(’U)

= C:\/(v—Th) © [é(,rh)]qn O Ugo,q1,+ 2ga-1391252, 1Jh (Th)'

Therefore
(2.10) u(v) — w(v)
o0 n -
] [Wr6 (74)]%
= o (XY B, ¥
n=0 g,=0 g1+ gh-1=n—qo
wh. - Wp_1 -1
q ... q | Z uqmql)“'»Qh-l;jlijy"' WJh (Th)> ‘
v L
= C5/(w-m) © eXP[mé(Th)] o u(Th), as desired.
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