THE VOLTERRA-STIELTJES INTEGRAL EQUATION AND THE OPERATOR-VALUED FUNCTION SPACE INTEGRAL AS AN $\mathcal{L}(L_p,\ L_{p'})$ THEORY

Kun Sik Ryu

ABSTRACT. In this note, we will prove that the operator-valued function space integral as an operator from L_p to $L_{p'}$ (1 for certain potential functionals satisfies a Volterra- Stieltjes integral equation

1. Introduction and preliminaries

Cameron and Storvick introduced an operator-valued function space integral in 1968 [3]. Johnson and Lapidus established the existence theorem of the operator-valued function space integral as an operator from $L_2(\mathbf{R}^N)$ to itself for certain functionals involving some Borel measures [8]. And in 1987, Lapidus proved that the integral satisfies the Schrödinger wave equation [10].

In 1992, Chang and the author established the existence theorem of the operator-valued function space integral as an operator from L_p to $L_{p'}$ (1 < p < 2) for certain functionals involving some Borel measures [4]. In this note, we will prove that the integral satisfies a Volterra-Stieltjes integral equation.

Now some notations and facts which are needed in next section. Insofar as possible, we adopt the definitions and notations of [4].

Received April 13, 1998.

¹⁹⁹¹ Mathematics Subject Classification: 28C20.

Key words and phrases: operator-valued function space integral, Volterra-Stieltjes integral equation.

This paper was supported by HAN NAM University Research Fund in 1997.

Kun Sik Ryu

- **A.** Let **N** be the set of all natural numbers and let **R** be the set of all real numbers. Let \mathbf{C}, \mathbf{C}_+ and \mathbf{C}_+^{\sim} be the set of all complex numbers, all complex numbers with positive real part and all non-zero complex numbers with non-negative real parts, respectively. Let ρ be a function on the set of all non-negative integers such that $\rho(0) = 0$ and $\rho(n) = 1$ for $n \geq 1$.
- **B.** Given a number p such that $1 \le p \le +\infty$, p and p' will be always related by $\frac{1}{p} + \frac{1}{p'} = 1$. If $1 is given, let <math>\alpha$ in $(1, +\infty)$ be such that $\alpha = \frac{p}{2-p}$. In our theorems, N will be a positive integer restricted so that $N < 2\alpha$. For 1 , let <math>r be a real number such that $\frac{2\alpha}{2\alpha N} < r < +\infty$. And let $\delta \equiv \frac{N}{2\alpha}$.
- C. For $1 \leq p \leq +\infty$, $L_p(\mathbf{R}^N)$ is the space of \mathbf{C} valued Borel measurable functions ψ on \mathbf{R}^N such that $|\psi|^p$ is integrable with respect to Lebesgue measure. Let $\mathcal{L}(L_p, L_{p'})$ be the space of bounded linear operators from $L_p(\mathbf{R}^N)$ into $L_{p'}(\mathbf{R}^N)$. For an operator T, T^* is a Banach adjoint of T.
- **D.** Let $1 be given. For <math>\lambda$ in \mathbf{C}_+^{\sim} , ψ in $L_p(\mathbf{R}^N)$, ξ in \mathbf{R}^N and a positive real number s, let

$$(\mathcal{C}_{\lambda/s}\psi)(\xi) = \left(\frac{\lambda}{2\pi s}\right)^{\frac{N}{2}} \int_{\mathbf{R}^N} \psi(u) \exp\left(-\frac{\lambda \|u-\xi\|^2}{2s}\right) dm_L(u)$$

where if N is odd we always choose $\lambda^{-\frac{1}{2}}$ with non-negative real part and if $\operatorname{Re}\lambda\equiv 0$, the integral in (1.1) should be interpreted in the mean just as in the theory of the L_p Fourier transform. From [9], as a function of λ , $\mathcal{C}_{\lambda/s}$ is analytic in \mathbf{C}_+ , it is strong continuous in \mathbf{C}_+^{\sim} , and it is in $\mathcal{L}(L_p, L_{p'})$ and $\|\mathcal{C}_{\lambda/s}\| \leq (\frac{|\lambda|}{2\pi s})^{\delta}$. Moreover, $\mathcal{C}_{\lambda/s}^* = \mathcal{C}_{\bar{\lambda}/s}$ where $\mathcal{C}_{\lambda/s}^*$ means the adjoint operator of $\mathcal{C}_{\bar{\lambda}/s}$ and $\bar{\lambda}$ is the conjugate of λ . From the Chapman-Kolmogorov theorem, $\mathcal{C}_{\lambda} \circ \mathcal{C}_{\mu} \psi = \mathcal{C}_{\lambda+\mu} \psi$ whenever the integrals exist. And so we adopt just the notation as follows $\mathcal{C}_{\lambda} \circ 1 \circ \mathcal{C}_{\mu} \equiv \mathcal{C}_{\lambda+\mu}$.

E. Let t > 0 be given. M(0,t) will denote the space of all complex Borel measures η on the interval (0,t). Every measure η in M(0,t) has a unique decomposition, $\eta = \mu + \nu$ into a continuous part μ and a discrete

part $\nu = \sum_{p=1}^{\infty} \omega_p \delta_{\tau_p}$, where $\langle \omega_p \rangle$ is a summable sequence in C and δ_{τ_p} is the Dirac measure [12]. And $M(0,t)^*$ will denote the subset of M(0,t) which satisfies the following conditions;

- (a) If μ is the continuous part of η in $M(0,t)^*$, then the Radon-Nikodym derivative $\frac{d|\mu|}{dm}$ exists and is essentially bounded, where m is the Lebesgue measure on (0,t).
 - (b) If $\nu = \sum_{p=1}^{\infty} \omega_p \delta_{\tau_p}$ is the discrete part of η in $M(0,t)^*$, then

$$\sum_{p=1}^{\infty} \mid \omega_p \mid \delta_{\tau_p}^{-r'\delta} \text{ converges.}$$

For μ in M(0,t), we define a measure $\bar{\mu}$ given by $\bar{\mu}(B) = \overline{\mu(B)}$ for all Borel subsets B of (a,b). Then for $\eta = \mu + \sum_{p=1}^{\infty} \omega_p \delta_{\tau_p}$, $\bar{\eta} = \bar{\mu} + \sum_{p=1}^{\infty} \bar{\omega_p} \delta_{\tau_p}$.

- **F.** Let $C_0[0,t] \equiv C_0$ be the space of \mathbf{R}^N -valued continuous functions on [0,t] which vanish at 0. We consider C_0 as equipped with N-dimensional Wiener measure m_w . Let $C[0,t] \equiv C$ be the space of \mathbf{R}^N -valued continuous functions on [0,t].
- **G.** For $1 and <math>\eta$ in M(0,t), let $L_{\alpha r:\eta}([0,t] \times \mathbf{R}^N) \equiv L_{\alpha r:\eta}$ be the space of all **C**-valued Borel measurable functions θ on $[0,t] \times \mathbf{R}^N$ such that

(1.2)
$$\|\theta\|_{\alpha r:\eta} = \left\{ \int_{(0,t)} \|\theta(s,\cdot)\|_{\alpha}^{r} d|\eta|(s) \right\}^{\frac{1}{r}} \text{ is finite.}$$

H. Let $1 be given and <math>\theta$ be in $L_{\alpha}(\mathbf{R}^N)$. From Lemma 1.3 in [9], the function $M_{\theta}: L_{p'}(\mathbf{R}^N) \to L_{p}(\mathbf{R}^N)$ defined by $M_{\theta}(f) = f\theta$, is in $\mathcal{L}(L_{p'}, L_p)$ and $\|M_{\theta}\| \le \|\theta\|_{\alpha}$. Moreover, $M_{\theta}^* = M_{\bar{\theta}}$. It will be convenient to let $\theta(s)$ denote $M_{\theta(s,\cdot)}$ for θ in $L_{\alpha r:\eta}$.

Let $\theta_1, \theta_2, \cdots, \overset{\circ}{\theta_{m-1}}$ be in $L_{\alpha}(\mathbf{R}^N)$, ψ in $L_p(\mathbf{R}^N)$ and $0 < s_1 < s_2 <$

 $\cdots < s_m < t$. From the Wiener integral formula [13],

$$\int_{C_0} \theta_1(x(s_1))\theta_2(x(s_2)) \cdots \theta_{m-1}(x(s_{m-1}))\psi(x(s_m)) dm_w(x)
= \left[\{ \mathcal{C}_{1/s_1} \circ \theta_1(s_1) \circ \cdots \circ \mathcal{C}_{1/(s_{m-1}-s_{m-2})} \circ \theta_{m-1}(s_{m-1}) \circ \mathcal{C}_{1/(s_m-s_{m-1})} \} \psi \right] (0).$$

I. Let 0 < k < 1 be given and m be in N. For $0 < s_1 < s_2 < \cdots < s_m < b$,

(1.4)
$$\int_{a}^{b} \int_{a}^{s_{m}} \cdots \int_{a}^{s_{1}} \{(s_{1} - a)(s_{2} - s_{1}) \cdots (b - s_{m})\}^{-k} ds_{1} \cdots ds_{m}$$

$$= \frac{(b - a)^{m - (m+1)k} \{\Gamma(1 - k)\}^{m+1}}{\Gamma((m+1)(1 - k))},$$

where Γ is the gamma function.

Throughout this paper, this values is denoted by E(a, b; m, k).

J. Let 1 be given. Let <math>F be a functional on C[0, t]. Given $\lambda > 0$, ψ in $L_p(\mathbf{R}^N)$ and ξ in \mathbf{R}^N , let

$$(1.5) [I_{\lambda}(F)\psi](\xi) = \int_{C_0} F(\lambda^{-\frac{1}{2}}x + \xi)\psi(\lambda^{-\frac{1}{2}}x(t) + \xi) dm_w(x).$$

If for m_L —a.e. ξ in \mathbf{R}^N , $[I_{\lambda}(F)\psi](\xi)$ exists in $L_{p'}(\mathbf{R}^N)$ and if the correspondence $\psi \to I_{\lambda}(F)\psi$ gives an element of $\mathcal{L}(L_p, L_{p'})$, we say that the operator-valued function space integral $I_{\lambda}(F)$ exists for λ . Suppose there exists λ_0 $(0 < \lambda_0 \le +\infty)$ such that $I_{\lambda}(F)$ exists for all $0 < \lambda < \lambda_0$ and there exists an $\mathcal{L}(L_p, L_{p'})$ -valued function which is analytic in $\mathbf{C}_{+,\lambda_0} \equiv \mathbf{C}_+ \cap \{z \in \mathbf{C} \mid |z| < \lambda_0\}$ and agrees with $I_{\lambda}(F)$ on $(0,\lambda_0)$, then this $\mathcal{L}(L_p, L_{p'})$ -valued function is called the operator-valued function space integral of F associated with λ and in this case, we say that $I_{\lambda}(F)$ exists for λ in \mathbf{C}_{+,λ_0} . If $I_{\lambda}(F)$ exists for λ in \mathbf{C}_{+,λ_0} and $I_{\lambda}(F)$ is strongly continuous in $\mathbf{C}_{+,\lambda_0}^{\sim} \equiv \mathbf{C}_+^{\sim} \cap \{z \in \mathbf{C} \mid |z| < \lambda_0\}$, we say that $I_{\lambda}(F)$ exists for λ in $\mathbf{C}_{+,\lambda_0}^{\sim}$. When λ is purely imaginary, $I_{\lambda}(F)$ is called the (analytic) operator-valued Feynman integral of F.

It is mathematically convenient and physically natural to work with the Banach adjoint $I_{\lambda}(F)^*$ of $I_{\lambda}(F)$ rather than with $I_{\lambda}(F)$ itself. Note that $I_{\lambda}(F)^*$ depends on time t both through the definition of F and that of $I_{\lambda}(F)$ in (1.5). We thus set, for λ in \mathbb{C}_{+}^{\sim} and t > 0,

$$(1.6) u(t) = I_{\lambda}(F)^*.$$

In [4], Chang and the author proved the following facts.

THEOREM 1.1. Let $1 be given, let <math>\eta$ be in $M(0,t)^*$, let θ be in $L_{\alpha r:\eta}$ and let $\eta = \mu + \nu$ be the decomposition of η into its continuous and discrete parts. Let

(1.7)
$$F(y) = \exp\left\{ \int_{(0,t)} \theta(s,y(s)) \, d\eta(s) \right\} \text{ for y in C.}$$

Suppose that $\nu = \sum_{p=1}^h w_p \delta_{\tau_p}$ where we may assume that $0 < \tau_1 < \tau_2 < \tau_2$

 $\cdots < \tau_h < t \text{ and } \theta(\tau_p, \cdot), \ p = 1, 2, \cdots, h, \text{ are essentially bounded.}$ Then the operator $I_{\lambda}(F)$ exists for λ in \mathbf{C}_{+}^{\sim} and for all λ in \mathbf{C}_{+}^{\sim} ,

(1.8)
$$I_{\lambda}(F) = \sum_{n=0}^{\infty} \sum_{\substack{q_0 + \dots + q_h = n \\ q_0, \dots, q_h \ge 0}} \sum_{j_1 + \dots + j_{h+1} = q_0} \frac{w_1^{q_1} \cdots w_h^{q_h}}{q_1! \cdots q_h!}$$

$$imes \int_{ riangle_{q_0,\cdots,q_h;j_1,\cdots,j_{h+1}}(t)} (L_0\circ L_1\circ\cdots L_h)\,d\prod_{i=1}^{q_0}\mu(s_i),$$

where for nonnegative integers q_0, q_1, \dots, q_h and j_1, j_2, \dots, j_{h+1} ,

for $(s_1, s_2, \dots, s_{q_0}) \in \triangle_{q_0, \dots, q_h; j_1, \dots, j_{h+1}}$ and $m \in \{0, 1, \dots, h\}$,

$$L_{m} = [\theta(\tau_{m})]^{q_{m}} \circ \mathcal{C}_{\lambda/(s_{j_{1}+\cdots+j_{m}+1}-\tau_{m})} \circ \theta(s_{j_{1}+\cdots+j_{m}+1}) \circ \mathcal{C}_{\lambda/(s_{j_{1}+\cdots+j_{m}+2}-s_{j_{1}+\cdots+j_{m}+1})} \\ \circ \cdots \circ \theta(s_{j_{1}+\cdots+j_{m}+1}) \circ \mathcal{C}_{\lambda/(\tau_{m+1}-s_{j_{1}+\cdots+j_{m}+1})}$$

and the integral is the Bochner integral [5]. (We use the conventions $\tau_0 = 0$, $\tau_{h+1} = t$ and $[\theta(\tau_0)]^{q_0} = 1$, an identity map on $L_{p'}(\mathbf{R}^N)$). Moreover, for all λ in \mathbf{C}_+^{\sim} ,

REMARK 1.2. (1) In the inequality (1.9), we can show the convergence of the summation by the essentially same method as in the proof of Theorem 2 in [1].

(2) From [7], we have

$$(1.10) \quad u(t) = I_{\lambda}(F)^{*} = \sum_{n=0}^{\infty} \sum_{\substack{q_{0}, \dots, q_{h} = n \\ q_{0}, \dots, q_{h} \geq 0}} \sum_{j_{1} + \dots + j_{h+1} = q_{0}} \frac{\overline{w_{1}}^{q_{1}} \dots \overline{w_{h}}^{q_{h}}}{q_{1}! \dots q_{h}!}$$

$$\times \int_{\Delta_{q_{0}, \dots, q_{h}; j_{1}, \dots, j_{h+1}}(t)} L_{h}^{*} \circ \dots L_{1}^{*} \circ L_{0}^{*} d \prod_{u=1}^{q_{0}} \bar{\mu}(s_{u}).$$

2. The main theorems

In this section, we will prove that $u(t) = I_{\lambda}^{*}(F)$ satisfies a Volterra-Stieltjes integral equation.

For v in $(\tau_h, t]$ and non-negative integers $q_0, q_1, \dots, q_h, j_1, j_2, \dots, j_{h+1}$ such that $q_0 + \dots + q_h = n$ and $j_1 + \dots + j_{h+1} = q_0$, we set

(2.1)
$$u_{q_0,q_1,\dots,q_h;j_1,j_2,\dots,j_{h+1}}(v) = \int_{\triangle_{q_0,\dots,q_h;j_1,\dots,j_{h+1}}(v)} L_h^* \circ L_{h-1}^* \circ \dots \circ L_0^* d \prod_{i=1}^{q_0} \bar{\mu}(s_i).$$

and

(2.2)
$$w_{q_{0},q_{1},\cdots,q_{h};j_{1},j_{2},\cdots,j_{h+1}}(v)$$

$$= \int_{\tau_{h}}^{v} C_{\bar{\lambda}/(v-s)} \circ \bar{\theta}(s) \circ u_{q_{0},q_{1},\cdots,q_{h};j_{1},j_{2},\cdots,j_{h+1}}(s) d\bar{\mu}(s).$$

THEOREM 2.1. For v in $(\tau_h, t]$, we have

$$(2.3) w_{q_0,q_1,\cdots,q_h;j_1,j_2,\cdots,j_{h+1}}(v) = u_{q_0+1,q_1,\cdots,q_h;j_1,j_2,\cdots,j_{h+1}+1}(v).$$

Proof. Let v be in $(\tau_h, t]$ and let q_0, q_1, \dots, q_h and j_1, j_2, \dots, j_{h+1} be given non-negative integers. Suppose k is the least number such that q_i is not a zero. Then

$$(2.4) \quad w_{q_{0},q_{1},\cdots,q_{h};j_{1},j_{2},\cdots,j_{h+1}}(v)$$

$$\stackrel{(1)}{=} \int_{\tau_{h}}^{v} C_{\bar{\lambda}/(v-s_{q_{0}+1})} \circ \bar{\theta}(s_{q_{0}+1}) \left[\int_{\triangle_{q_{0},\cdots,q_{h};j_{1},\cdots,j_{h+1}}(s_{q_{0}+1})} (L_{h}^{*} \circ L_{h-1}^{*} \circ \cdots \circ L_{0}^{*}) d \prod_{i=1}^{q_{0}} \bar{\mu}(s_{i}) \right] d\bar{\mu}(s_{q_{0}+1})$$

$$\stackrel{(2)}{=} \int_{\tau_{h}}^{v} C_{\bar{\lambda}/(v-s_{q_{0}+1})} \circ \bar{\theta}(s_{q_{0}+1}) \left[\int_{\triangle_{q_{0},\cdots,q_{h};j_{1},\cdots,j_{h+1}}(s_{q_{0}+1})} C_{\bar{\lambda}/(\tau_{h}-s_{q_{0}})} \circ \bar{\theta}(s_{q_{0}}) \circ C_{\bar{\lambda}/(s_{j_{1}+j_{2}+\cdots+j_{h}+1}-s_{j_{1}+j_{2}+\cdots+j_{h}})} \circ \bar{\theta}(s_{j_{1}+j_{2}+\cdots+j_{h}}) \circ \cdots \circ C_{\bar{\lambda}/(s_{j_{1}+j_{2}+\cdots+j_{k}+2}-s_{j_{1}+j_{2}+\cdots+j_{k}+1})} \circ \bar{\theta}(s_{j_{1}+j_{2}+\cdots+j_{k}+1}) \circ L_{k}^{*} \circ L_{k-1}^{*} \circ \cdots \circ L_{0}^{*} d \prod_{i=1}^{q_{0}} \bar{\mu}(s_{i}) \right] d\bar{\mu}(s_{q_{0}+1})$$

Kun Sik Ryu

$$\stackrel{(3)}{=} \int_{\Delta_{q_0,\cdots,q_h;j_1,\cdots,j_{h+1}+1}(v)} C_{\bar{\lambda}/(v-s_{q_0+1})} \circ \bar{\theta}(s_{q_0+1})
\circ C_{\bar{\lambda}/(\tau_h-s_{q_0})} \circ \bar{\theta}(s_{q_0}) \circ C_{\bar{\lambda}/(s_{j_1+j_2+\cdots+j_h+1}-s_{j_1+j_2+\cdots+j_h})}
\circ \bar{\theta}(s_{j_1+j_2+\cdots+j_h}) \circ \cdots \circ C_{\bar{\lambda}/(s_{j_1+j_2+\cdots+j_h+2}-s_{j_1+j_2+\cdots+j_h+1})}
\circ \bar{\theta}(s_{j_1+j_2+\cdots+j_h+1}) \circ L_k^* \circ L_{k-1}^* \circ \cdots \circ L_0^* d \prod_{i=1}^{q_0+1} \bar{\mu}(s_i)$$

$$\stackrel{(4)}{=} \int_{\Delta_{q_0+1,\cdots,q_h;j_1,\cdots,j_{h+1}+1}(v)} (L_h^* \circ L_{h-1}^* \circ \cdots \circ L_0^*) d \prod_{i=1}^{q_0+1} \bar{\mu}(s_i)$$

$$\stackrel{(5)}{=} u_{q_0+1,q_1,\cdots,q_h;j_1,j_2,\cdots,j_{h+1}+1}(v).$$

Steps (1) and (5) follow from the definitions of u, w in (2.1) and (2.2) respectively. By the assumption, we have Step (2). Step (3) follows, we know that the following two facts are equivalent;

- (1) s_{q_0+1} is in (τ_h, v) and $(s_1, s_2, \cdots, s_{q_0})$ is in $\triangle_{q_0, q_1, \cdots, q_h; j_1, j_2, \cdots, j_{h+1}}(s_{q_0+1})$,
- (2) $(s_1, s_2, \dots, s_{q_0}, s_{q_0+1})$ is in $\triangle_{q_0+1,q_1,\dots,q_h;j_1,j_2,\dots,j_{h+1}+1}(v)$. And so, by the D in section 2, we obtain Step (4).

Theorem 2.2. The operator-valued function u satisfies the Volterra-Stieltjes integral equation

(2.5)
$$u(v) = C_{\overline{\lambda}/(v-\tau_h)} \circ e^{\overline{u_h}\overline{\theta}(\tau_h)} \circ u(\tau_h) + \int_{\tau_h}^{v} C_{\overline{\lambda}/(v-s)} \circ \overline{\theta}(s) \circ u(s) d\overline{\mu}(s)$$

for all v in (τ_h, t) .

Proof. For v in (τ_h, t) , let

$$(2.6) w(v) = \int_{\tau_h}^v \mathcal{C}_{\overline{\lambda}/(v-s)} \circ \bar{\theta}(s) \circ u(s) d\bar{\mu}(s).$$

Then

$$(2.7) w(v) \stackrel{(1)}{=} \sum_{n=0}^{\infty} \sum_{\substack{q_0 + \dots + q_h = n \\ q_0, \dots, q_h \ge 0}} \sum_{j_1 + \dots + j_{h+1} = q_0} \frac{\overline{w_1}^{q_1} \cdots \overline{w_h}^{q_h}}{q_1! \cdots q_h!}$$

$$imes \int_{ au_h}^v \mathcal{C}_{ar{\lambda}/(v-s)} \circ ar{ heta}(s) \circ u_{q_0,q_1,\cdots,q_h;j_1,j_2,\cdots,j_{h+1}}(s) \, dar{\mu}(s).$$

$$\stackrel{(2)}{=} \sum_{n=0}^{\infty} \sum_{\substack{q_0+\cdots+q_h=n\\q_0,\cdots,q_k>0}} \sum_{j_1+\cdots+j_{h+1}=q_0} \frac{\overline{w_1}^{q_1}\cdots\overline{w_h}^{q_h}}{q_1!\cdots q_h!}$$

$$\times w_{q_0,q_1,\cdots,q_h;j_1,j_2,\cdots,j_{h+1}}(v)$$

$$\stackrel{(3)}{=} \sum_{n=0}^{\infty} \sum_{\substack{q_0+\cdots+q_h=n\\q_0,\cdots,q_h\geq 0}} \sum_{j_1+\cdots+j_{h+1}=q_0} \frac{\overline{w_1}^{q_1}\cdots\overline{w_h}^{q_h}}{q_1!\cdots q_h!}$$

$$\times u_{q_0+1,q_1,\cdots,q_h;j_1,j_2,\cdots,j_{h+1}+1}(v)$$

$$\stackrel{(4)}{=} \sum_{n=0}^{\infty} \sum_{q_0=0}^{n} \sum_{q_1+\dots+q_h=n-q_0} \sum_{j_{h+1}=0}^{q_0} \sum_{j_1+\dots+j_h=q_0-j_{h+1}} \frac{\overline{w_1}^{q_1} \cdots \overline{w_h}^{q_h}}{q_1! \cdots q_h!}$$

$$\times u_{q_0+1,q_1,\cdots,q_h;j_1,j_2,\cdots,j_{h+1}+1}(v)$$

$$\stackrel{(5)}{=} \sum_{n^*=1}^{\infty} \sum_{q_0^*=1}^{n^*} \sum_{q_1+\dots+q_h=n^*-q_0^*} \sum_{j_{h+1}^*=0}^{q_0^*} \sum_{j_1+\dots+j_h=q_0^*-j_{h+1}^*} \frac{\overline{w_1}^{q_1} \cdots \overline{w_h}^{q_h}}{q_1! \cdots q_h!} \times u_{q_0^*,q_1,\dots,q_h;j_1,j_2,\dots,j_{h+1}^*}(v)$$

$$\stackrel{(6)}{=} \sum_{n^{*}=0}^{\infty} \sum_{q_{0}^{*}=1}^{n^{*}} \sum_{q_{1}+\dots+q_{h}=n^{*}-q_{0}^{*}} \sum_{j_{h+1}^{*}=0}^{q_{0}^{*}} \sum_{j_{1}+\dots+j_{h}=q_{0}^{*}-j_{h+1}^{*}} \frac{\overline{w_{1}}^{q_{1}} \cdots \overline{w_{h}}^{q_{h}}}{q_{1}! \cdots q_{h}!} \times u_{q_{0}^{*},q_{1},\dots,q_{h};j_{1},j_{2},\dots,j_{h+1}^{*}}(v).$$

$$179$$

Step (1) follows from Theorem 1.1 and the the bounded convergence theorem. From (2,2), we have Step (2). By Theorem 2.1, we obtain Step (3). Step (4) is trivial. Putting $n^* = n + 1$, $q_0^* = q_0 + 1$ and $j_{h+1}^* = j_{h+1} + 1$, we have $n^* - q_0^* = n - q_0$, and $q_0^* - j_{h+1}^* = q_0 - j_{h+1}$, and so Step (5) holds. If $n^* = 0$, then $q_0^* = 0$, which is impossible, so we have Step (6). Thus, we have

(2.8)
$$u(v) - w(v) = \sum_{n=0}^{\infty} \sum_{q_0 + \dots + q_h = n} \sum_{j_1 + \dots + j_h = q_0} \frac{\overline{w_1}^{q_1} \cdots \overline{w_h}^{q_h}}{q_1! \cdots q_h!}$$

$$\times u_{q_0,q_1,\cdots,q_h;j_1,j_2,\cdots,j_h,0}(v).$$

Moreover, $\triangle_{q_0,q_1,\cdots,q_h;j_1,\cdots,j_h,0}(v) = \triangle_{q_0,q_1,\cdots,q_h;j_1,\cdots,j_h}(\tau_h)$ and on $\triangle_{q_0,q_1,\cdots,q_h;j_1,\cdots,j_h,0}(v)$,

$$(2.9) u_{q_0,q_1,\cdots,q_h;j_1,\cdots,j_h,0}(v)$$

$$= \mathcal{C}_{\bar{\lambda}/(v-\tau_h)} \circ [\bar{\theta}(\tau_h)]^{q_h} \circ u_{q_0,q_1,\cdots,q_{h-1};j_1,j_2,\cdots,j_h}(\tau_h).$$

Therefore

$$(2.10) u(v) - w(v)$$

$$= C_{\bar{\lambda}/(v-\tau_h)} \circ \left(\sum_{n=0}^{\infty} \sum_{q_h=0}^{n} \frac{[\overline{w_h} \bar{\theta}(\tau_h)]^{q_h}}{q_h!} \circ \sum_{q_1+\dots+q_{h-1}=n-q_0} \right)$$

$$\cdot \frac{\overline{w_1}^{q_1} \cdots \overline{w_{h-1}}^{q_{h-1}}}{q_1! \cdots q_{h-1}!} \sum_{j_1+\dots+j_h=q_0} u_{q_0,q_1,\dots,q_{h-1};j_1,j_2,\dots,j_h}(\tau_h) \right).$$

$$= C_{\bar{\lambda}/(v-\tau_h)} \circ \exp[\overline{w_h} \bar{\theta}(\tau_h)] \circ u(\tau_h), \text{as desired.}$$

References

- [1] J. M. Ahn, K. S. Chang, J. G. Kim, J. W. Ko, K. S. Ryu, Existence theorem of an operator-valued Feynman integral as an $\mathcal{L}(L_1, C_0)$ theory, Bull. Korean Math. Soc. 34 (1997), 317-334.
- [2] R. H. Cameron, A family of integrals serving to connect the Wiener and Feynman integrals, J. Math. and Phys. 39 (1960), 126-139.

- [3] R. H. Cameron, D. A. Storvick, An operator-valued function space integral and a related integral equation, J. Math. and Mech. 18 (1968), 517-552.
- [4] K. S. Chang and K. S. Ryu, Analytic operator-valued function space integrals as an $\mathcal{L}(L_p, L_{p'})$ theory, Trans. Amer. Math. Soc. **330** (1992), 697-709.
- [5] K. S. Chang, K. S. Choi, J. A. Lim and K. S. Ryu, Uniform continuity of Schrödinger type operators and the operator-valued function space integral, to appear.
- [6] R. P. Feynman, Space-time approach to non-relative quantum mechanics, Rev. Mod. Phys. 20 (1948), 367-387.
- [7] E. Hille and R. S. Phillips, Functional analysis and Semi-groups, A. M. S. Collq. Publ., Vol. 31, 1957.
- [8] G. W. Johnson and M. L. Lapidus, Generalized Dyson series, Generalized Feynman Diagrams, the Feynman integral and Feynman's operational Calculus, Mem. Amer. Math. Soc., Vol. 62, No. 351, 1986.
- [9] G. W. Johnson and D. L. Skoug, The Cameron-Storvick function space integral; $An \mathcal{L}(L_p, L_{p'})$ theory, Nagoya Math. J. **60** (1976), 93-137.
- [10] M. L. Lapidus, The Feynman formula with a Lebesgue-Stieltjes measure and Feynman's operational Calculus, Stud. Appl. Math. 76 (1987), 93-132.
- [11] E. Nelson, Feynman integral and the Schrödinger equation, J. Math. Phys. 5 (1964), 332-343.
- [12] M. Reed and B. Simon, Methods of Mathematical Physics, Vol. I, II, Rev. and enl. ed., Academic Press, New York, 1980.
- [13] B. Simon, Functional Integration and Quantum Physics, Academic Press, New York, 1979.
- [14] K. Yosida, Functional Analysis, Springer-Verlag, New York, 1974.

DEPARTMENT OF MATHEMATICS, HAN NAM UNIVERSITY, TAEJON 306-791, KOREA