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ON A DISCUSSION OF NONLINEAR INTEGRAL EQUATION
OF TYPE VOLTERRA-HAMMERSTEIN

M. M. EL-Borai?, M. A. ABpou® aNnD M. M. EL-K0JOK ©

ABSTRACT. Here, we consider the existence and uniqueness solution of nonlinear
integral equation of the second kind of type Volterra-Hammerstein. Also, the nor-
mality and continuity of the integral operator are discussed. A numerical method is
used to obtain a system of nonlinear integral equations in position. The solution is
obtained, and many applications in one, two and three dimensionals are considered.

1. INTRODUCTION

Many authors have interested in solving the linear and nonlinear integral equa-
tion. In [1], Blon and Brunner introduced a class of methods depending on some
parameters for the numerical solution of Abel integral equation of the second kind.
Abdalkhani, in [2], obtained a numerical solution for the nonlinear Volterra, integral
equation of the second kind, when the kernel takes Abel’s function form. Guoqgiang
et al., in (3], obtained numerically the solution of two-dimensional nonlinear Volterra
integral equation by collocation and iterated collocation methods. In [4], Guogiang
and Jiong analyzed the existence of asymptotic error expansion of the Nystrﬁm SO-
lution for two-dimensional nonlinear Fredholm integral equation of the second kind.
In [5], Abdou obtained, using separation variables method, the solution of the lin-
ear Fredholm-Volterra integral equation in one, two and three dimensionals. Many
different cases for the linear and nonlinear integral equation with different kernels
are discussed and solved by Abdou in [6]. Consider the nonlinear integral equation

of the second kind of type Volterra-Hammerstein in n-dimensional

t
(11)  pd(mt) = fla,t) + A /(; /Q F(t,7)K(z, y)(r, v, 6y, 7)) dydr,
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(x = Z(x1,22, - ,Zn), ¥=19(Y1,Y2,"** ,Yn); I, A are constants).

Here, f(z,t) and (¢, z, ¢(x,t)) are two given functions, while the function ¢(z,t) is
unknown in Banach space L2(2) x C[0,T], where the domain of integration 2 is a
closed bounded set depends on the vector of position, while the time ¢ € [0, T}. The
two kernels of position K (x,y), and of time F(t,7),¢,7 € [0,T],t < oo are continuous
with their derivatives with respect to position and time respectively. The constant
1 defines the kind of the integral equation, while X is a constant, may be complex,
that has a physical meaning. Differentiating Eq.(1.1) with respect to the variable ¢,
we get

0¢(x,t)  Of(x,t)
=% T " &

i
* A/O ./Q _a—FT‘(;t’—T)-K(x’ y)'Y(T» Y, ¢(y, T))dydT.

(1.2)

+A /Q F(t,)K (z,y)7(t, y, 6(y, 1)) dy

The integro-differential equation (1.2) is equivalent to the integral equation {1.1).
Therefore, the same solution will verify both of the two equivalent equations after
neglecting the constant term. In this work, the existence and uniqueness solution of
nonlinear integral equation of the second kind of type Volterra-Hammerstein, under
certain conditions are discussed and proved, where the term of Volterra is considered
in time, while Hammerstein in position. Moreover, the normality and continuity of
the integral operator are considered. A numerical method is used to obtain a system
of nonlinear integral equations in position. Also, the degenerate kernel method is
considered, for solving the integral system numerically. Finally, many different cases
in one, two and three dimensionals with different kernels are solved.

2. THE EXISTENCE AND UNIQUENESS SOLUTION

In this section , Banach fixed point theorem will be used as a source of existence
and uniqueness solution of Eq.(1.1). For this, we write it in the integral operator

form

(2.1) Wo(a.t) = = (@) + SW(z.0), (u#0)

1
U

where

t
(2.2) Wo(z,t) = A /0 /Q F(t, 1)K (&, y)7(r, 4, d(y, 7)) dydr.
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Also, we assume the following conditions:
(i) The kernel of position K (z,y),x = &(z1,Zo, - ,%n),y = (Y1, Y2, -+ » Yn), satis-
fies the discontinuity condition

1
2
{//|K(m,y)|2dxdy} =¢*, (c* is a constant).
QJQ

(ii) The kernel of time F(t, 7) € C[0, T] and satisfies |F(t, )| < M, M is a constant,
Vi, 7€[0,T], 0<7<t<T < 0.

(iii) The given function f(z,t) with its partial derivatives with respect to position
z and time ¢ are continuous in the space L2(2) x C[0, T}, and its norm is defined as

/Ot{/gﬁ(x,f)dx}%df

(iv) The known continuous function (¢, z, ¢(x,t)) for the constants Q > P and

Q > Q; satisfies the following conditions :
t

(a) maxl 0 { / h(r,x,¢<x,r))|2dx}df1sanqs(x,t)sm)xc[o,ﬂ.

£ (2, ) Lo@yxclory = =G, (G is a constant).

0<t<T

o<t<LT

(b) |7t 2, d1(, 1)) — (¢, 2, a(2, 1)) < N(t,2)|¢1(z,t) — da(a, )],

where :
t 3
/ {/N2(T,.'L')d.’l:} dr
0 Q

Theorem 1. If the conditions (i)-(iv) are satisfied, then Eq.(1.1) has a unique
solution in Banach space La(§2) x C[0,T).

IN (¢, @)l Ly @) xcpo,r) = max = P < .

0<t<T

To prove this theorem, we must consider the following lemmas :

Lemma 1. Under the condition (i)-(iv — a), the operator W maps Banach space
Ly() x C[0,T] into itself.

Proof. In the light of the two formulas (2.1) and (2.2), we have

/ / F(t, )] K ()] (7, v, 6y, 7)) dydr]|.

Using the conditions (ii) and (111), then applying Cauchy-Schwarz inequality, we get

W, )] < ﬁllf( w0l + A

Wtz 0 < =+ aa{ [ 1K) |2dy}l

/0 { /9 (7,9, 6(v; T)’2|dy}%dr

- max
0<t<T
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In view of conditions (i) and (iv-a), the above inequality can be adapted to,

= G A .
(23 IWote. 0 < o + alléta. ), (0 = |3 perr)
The previous inequality (2.3) shows that, the operator W maps the ball S, into itself
where,
G
(2.4) p= .
(e} = ANIM QT

Since p > 0, G > 0, therefore we have o < 1. Also, the inequality (2.3) involves the
boundedness of the operator W of Eq.(2.2), where

(2.5) Wo(z,y)ll < olig(z, Y.
Moreover , the inequalities (2.3) and (2.5) define the boundedness of the operator
w. O

Lemma 2. Assume that the conditions (i),(ii) and (iv-b) are verified, then W is a

contraction operator in Banach space Lo(SY) x C[0,T).

Proof. For the two functions ¢1(z,t) and ¢2(z,t) in Banach space L2(2) x C[0, 77,
and from Eqgs.( 2.1), (2.2), we find

t
Wiz, 1) - Wen(a, B < {%}“ [ [1FenliK el b o)

~ (7, y, $2(y, 7)) |dydr

With the aid of conditions (ii) and (iv-b), the above inequality becomes

/Ot/Q |K (z,y)| N(7,y) |¢1(y, 7) — ¢2(y, 7)|dyd

Applying Cauchy-Schwarz inequality to Hammerstein integral term then using con-

W1 (z,t) — Wea(x,t)|| < M%}

dition (i), we finally get
(2.6) [We1(z,t) — Wes(z,t)|| < all¢i(z,t) — p2(z, 1)

From inequality (2.6), we see that, the operator W is continuous in Banach space
Ly(9) x C[0, T}, then W is a contraction operator under the condition 0 < 1. O

Proof of Theorem 1. The previous two lemmas (1) and (2) prove that, the operator
W of Eq.(2.1) is contractive in Banach space L2(€2) x C[0,T). So, from Banach fixed
point theorem, W has a unique fixed point which is, of course, the unique solution
of Eq.(1.1). a
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3. SYSTEM OF NONLINEAR INTEGRAL EQUATIONS IN POSITION

In this section, a numerical method is used in the mixed integral Eq.(1.1), to
obtain a system of nonlinear integral equations in position.

If we divide the interval [0,7], 0 <7<t <T<ooas0 =ty <t; < .. <<
. <ty =T, where t =ty, k=0,1,2,..., N, the integral term of Eq.(1.1) becomes

. te
(31) </0 LF(tkaT) K(x,y) ’Y(T,y,(b(y»T))dydT

k
=Y 0Pk, 1)) /Q K(2,9) 1t 3, 6(y, ;))dy + O, (e — 0, p > 0)
=0
where,

1 1 ; .
Nk = Orél?%(khj’ hj = tj+1 — tj, u(o) = -2—h0, u(k) = ihk’ u(J) = hj (j 79 0, k)_

The values of ul)’s and p; p ~ k are depending on the number of derivatives of
F(t,7) with respect to time, see [7, 8].
Using (3.1) in (1.1), and neglecting O(n,’C’H), we have

k
32)  ue® () =By + 1) I FGH / K(z,y) 79 (y, 69 (1)) dy.
=0 @

Here, we used the following notations
¢(x,tx) = 69 (@), f(a,tx) = fP (@), Flte,t;) = F9*), and
(33) (.2, 6(2.1;)) =4V (, Y ()), & = Z(w1, 22, s Zn)s Y = J(Y1, Y2, s Yn)-

The formula (3.2) represents a system of nonlinear algebraic integral equations in
n-dimensional, and its solution depends on the given function f()(z), the kind of
the kernel K(z,v), and the degree of the known function v\ (z, ¢ (z)).

4. ON A METHOD TO SOLVE A SYSTEM OF NONLINEAR INTEGRAL
EQUATIONS

The simplicity of finding a solution of the nonlinear algebraic integral system
(3.2) with a degenerate method naturally leads one to think of replacing the given
kernel K(z,y) approximately by a degenerate kernel K,(z,y); that is

(4.1) Kn(z,9) = Y Bi(z)Ci(y)-
=1
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Here, the set of functions {B;(x)} and {Ci(y)} are assumed to be linearly indepen-
dent, such that

1

(4.2) { /Q /9 K (z,y) —Kn(m,y)|2dmdy}2 0 as n— oo,

Hence, the solution of Eq.(3.2) associated to the kernel Ky (x,y) takes the form
k - - . .

(4.3) po(z) = fB (@) + A u(’)F(”’“)/ Kn(,9) Y9 (v, 6 (y))dy.
rd Q

Using (4.1) in (4.3), we have

n k
(4.4) po®(z) = fO(2) + A3 S uDFORAD By(x), (u#0), k=0,1,2,...N.
i=0 j=0

where
(45) AP = [ G 6P 0N, (= 0.1,2..h).

Here, Az(j Ds are constants to be determined from the following formula

. , 1 .
@) AP = [ Calyn? (y, L p0) )
Q 22
i o
Zzu(r)p(r,J)Az(_J)Bi(yo dy, (m=0,1,2...,n).

i=1 r=0

-+

">

If we define

N . . 1 ..
HSZ)(A?),Ag),‘--,AS))=/QCm(y)7(’) (y,;f(”)(y)

n

A J NG
4.7 +— u(r)F(m)AwBi )d , (m=0,1,2...,n).
(4.7) " ;; J'Bi(y) )dy, (

then, Eq.(4.6) represents a system of nonlinear algebraic equations which can be

written as a matrix equation
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p I A
AY HO (4D 40) | AD)
(4.8) | = :

49] | a99 49, a0
or in a vector form as
(4.9) AU) = g (40)),
where,

1O = (9, 1), ., 1Y),
and

AW = (AP 4D AW,
The nonlinear algebraic system (4.8) or (4.9) can be solved numerically.

Now, we shall show that the unique solution of the nonlinear algebraic system

(4.4) corresponds to the unique solution of (4.8). Also, under the condition (4.2),we

shall prove that, for each positive integer n > ng, the unique solution of Eq.(4.3)
converges to the unique solution of Eq.(1.1).

Theorem 2. Suppose that K,(z,y) € C(|Q] x [Q]) and satisfy condition (4.2), then
there ezists a positive integer ng, such that for each n > ng, the integral equation

¢

@10 wu(et) = fe)+A [ [ FEnKale )1y, 0n(y, )y
0 JQ

has a unique solution ¢n(z,t) € L2(2) x C[0,T].

Proof. In view of condition (4.2) and condition (i) of Theorem (1), there exists a
positive integer ng, such that

1
(4.11) {//I}'{n(a:,y)|2dacdy}2 <c*, Vn > ng.
QJQ

Define the operator

(4.12) Vn(z,1) = if(w,t) 4 ivm(x,t), (u#0),

where,

(413)  Vénla,t) = A /0 /Q F(t,7)Kn(2, 9)Y(r,y, 6a(y,7))dudr.
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Taking in account the conditions of Theorem 1 with the condition (4.11), and pro-
ceeding the same proof of Lemma 1 and 2, we see that V is a bounded and continuous
operator which maps Banach space L2(€2) x C[0,T] into itself, where

(4.14) IV pn(z, )] < = P | +ollgn(z, t); ¢n € L2() x C[0, T}, ¥n > no,
and
(4.15) Vo1 (z,t) ~ Vol (z,t)|| < ollo®P (z,t) — ¢P (=, 8)];

o0, 6@ € Ly(Q) x C[0,T], Yn > no.

Hence, V is a contraction operator under the condition & < 1 . Moreover, by virtue
of Banach fixed point theorem, V has a unique fixed point which is, the unique

solution of Eq.(4.10). O
Theorem 3. Under the same assumptions of Theorem 1 and 2, the sequence of

solution {¢n(x,t)} of Eq.(4.10) converges to the unique solution ¢(z,t) of Eq.(1.1)

in Banach space Ly(Q) x C[0,T).
Proof. From the two formulas (1.1) and (4.10), we get

() — n(z, t)

t
‘%{ 0 /Q|K(a:,y)—Kn(:v,y)lI‘V(T,y,cb(y,f))dydT

’ “ /0/9 IF (&l K2, )l 197, 9,83, 7)) = (7, 8n(y, 7)) ldyer }

Introducing conditions (ii) and (iv-b), then applying Cauchy-Schwartz inequality

the previous inequality becomes,

16(2,6) — fn(z, t)llsw {( [ IFeI1K @) - Ko y)ldy)

/o (/n v(r.y, 90, T))I2dy) b
(/Q'Kn(w,y)de)% e /Ot (/#Nz(ﬁ ) 6(s.7)

o \?
= én(y, 7)| dy) dr }
In view of conditions (4.11) and (iv-a), the above inequality takes the form

:w(m,t)—m(m,t)ns: :MTQ{HK(w y) - Ka(z,9)] |6(z, 1)

+c*lé(,t) — dnl=, )1}

* max
0Lt
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Thus, we have

(4.16)
IAMTQ |
I9(z.1) = gn(2: )l < g 19 ONIE@9) ~ Kal@ vl (o < D).

Since [|K (2,4) — Kn(@,y)l| = 0 as n — 00, 50 [[4(z,t) — ¢n(@,t)]| — 0 as n — oo.
This completes the proof. a

Theorem 4. Assume that, the known continuous functions 'y(j)(y,\Il(y, Al(-j))) in
Eq.(4.7) satisfy the following conditions

n

1 1
(4.17) {/ I'Y(j)(y,\I!(y, Agj)))|2dy}2 < L(Z ‘Az(j)|2> 2, (L is a constant)
Q i=1

and

(M is a constant).

Then, the algebraic system (4.8) has a unique solution AG), and ¢£lk) (z) is the unique
solution of Fq.(4.4) in the Banach space {s.

To prove this theorem, we must consider the following two lemmas:

Lemma 3. Under condition (4.17), the operator HY) of Eq.(4.9) maps Banach space
£ into itself.

Proof. Let U be the set of functions Z = {£;} in Banach space {3 such that
© N3
IElle, = (Z |§i|2> < B, Bis a constant.
i=1
From Eq.(4.7), we have

|HO (AP, AD . A0)))| S/QICm(yN

. 1 ..
)] a6}
¥ (y,#f (¥)

A S G
+23°3 u(T)F(w)AgJ)B,-(y)) ’dy.

K i=1 r=0
Applying Cauchy-Schwarz inequality, and using condition, the above inequality be-

comes,
1

1
n 2 n . 2
(Z|H,<,J;’<A§“,A§”,...,A,&J)n?) SMz(ZIA?H?) :

m=1 =1
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1
where, My = L( Zn: /Q |Cm(y)|2dy)§. As n — oo, the last inequality can be
adapted to, m
(4.19) IEDAD)|, < Ma]| AP,
Hence, Y is a bounded operator which maps the set U into itself where,
(4.20) B = Mp| AD)|p,.

|

Lemma 4. Under condition (4.18), HY) is a contraction operator in the Banach

space £3. ] ) ) o ) ) )
Proof. Let AU) = (Agj),Ag),...,Asf)) and DU) = (DgJ),ng),..., 53)) be any two

vectors. In view of Eq.(4.7), we get

|HD (AP, AP, .., D) — HO(DP, DY, ..., DY)

j 1 j A L T g j
< [1Ca@I 19 (1110w + 253 w0 D49 5,))
Q # Hisir=o
— 4@ (y o G (y) + ; Y > uOFIpY Bz’(’y)) |dy

=1 r=0
Introducing condition (4.18), then applying Cauchy-Schwarz inequality three times,
respectively, the above inequality takes the form,

(&

( ST |HP AP, AD, ..., AD) - HO (DY, DY) ., D§3>>12)
m=1
1

n . . 5
< Ms(z |A§]) - Dz(J)|2) , (Msj is a constant),
i=1

where,
1

|A| n % J . 2
My =M Z [ul)? Z |F(rd) |2
“l'l r=0 r=0

1
2

. y 2 % 3 . 2

As n — o0, the previous inequality can be reduced to

(a21) |89 (AD) ~ BO(DD)ly, < M| AD ~ DD,
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Thus, HY) is a continuous operator in the Banach space fo. If M3 < 1, then H is
a contraction operator. o

Proof of Theorem 4. By virtue of lemmas (3) and (4), we see that HY) is a con-
traction operator which maps Banach space #3 into itself. Hence, by Banach fixed
point theorem, H() has a unique fixed point AY) which is the unique solution of
the algebraic system (4.8) . For this solution, it is obvious that qbn )(x) is the unique
of Eq.(4.4) by Theorem 2. 0

5. EXAMPLES

Here, two examples will be introduced as an illustration for solving nonlinear
integral equation of type Volterra-Hammerstein with degenerate kernel.

Example 1. Consider the nonlinear Volterra-Hammerstein integral equation of the
second kind

(5.1) ¢(z,t) - /Ot /01 31+ zy) ¢ (y, 7)dydT = xt — %xt6 - —t6 (¢(z,t) = xt).

If we divide the interval [0,T] as 0 =ty <t; <ty <tz =t, t =t; k=0,1,2,3, the
integral Eq.(5.1) takes the form

—t§, (k=0,1,2,3).

k
1
52 0u(a) - Yt [ @+ enidy = st~ St~

Using the degenerate method, we have the following nonlinear algebraic system
k

1
(5.3) o(x Zoujt [ + zy;] = ztg, — 24xtk

1

18t’“’ (k=0,1,2,3),
where,

1 2
1 1
(5.4) =/0 [ytk - _4yt6 18tk + E th](aJ +y'y])] dy, (k=0,1,2,3),

and

1 2
1 1

(55) Ye = y '!/tk - ytk tk + u]t_] (a] + y’YJ) dy’ (k = 01 11 27 3)7
o 24 18

Thus, the solution of the nonlinear algebraic system (5.3) leads us to

xt 2:ct
¢0($) =0, ¢1(IL') = ?7 ¢2("I;) = ¢3( )
It is obvious that ¢3(x) is the exact solution of Eq.(5.1).
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Example 2. Consider the nonlinear Volterra -Hammerstein integral equation of the
second kind
t rl x 6
(5.6) ¢(x,¢t) _/0 /0 3eV ¢ (y, 7)dydr = xt — [% - %e + j * %} %,
(¢(z,t) = xt).
Dividing the interval [0,7] as 0 = tg < t; < to < t3 =1, t = t;; k = 0,1,2,3, the
integral Eq.(5.6) can be written in the form

£ 1 e 2 2 2748
CR | eiway =an— | - Zers S - 2R
(k=0,1,2,3).
The kernel K(z,y) = e™ can be approximated by a degenerate one
(5.8) Kafwy) = 3 O,
m=0

which is a Taylor polynomial of degree n at = = 0, and satisfies

(5.9) {/01 /0] |K (z,y) —Kn(x,y)lzdwdy}% —0 as n— .

Introducing the degenerate kernel K, (z,y) instead of the kernel K(z,y) in (5.7), we
get

k
610 o -3 wt [ 3 T By = R, (:=0.1,29
7=0

m=0
where,
T 2 tG
(5.11)  Fu(z) = Fu(z, ty) = aty — [% - %ew + %e”' - 2%, k=01,29)
Therefore, we have
(5.12) br(x) — Z Z u]t3———A(m) Fi(z), (k=0,1,2,3),
J=0m=0
where,
2
(513) A= / [Fk y) + Z Z ujt} ("‘)J dy, (k=0,1,2,3).
7=0m=0

The solution of (5.12), with the aid of (5.13), gives the following results
xt 2zt
$o(@) =0, Ai(2) =7, ¢a(2) ==, sa) =
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Here, ¢3(z) is the exact solution of Eq.(5.6).

6. APPLICATIONS AND SPECIAL CASES

In this section, we shall discuss different formulas that can be established from
the type of nonlinear Volterra-Hammerstein integral equation.

(1) Hammerstein integral equation :

If in Eq.(3.2), £ = (1), 2 = [0, 1] and k = 0, we have the integral equation
1
(6.1) ¥(z) + o / K(z,9)2(y, ¥())dy = g(z),

where, ¥(z) = 0 (z) — 1@ 114 Ao = w@FOOA

The formula (6.1) represents a Hammerstein integgal equation of the second kind.
Lardy, in [9], used a variation of Nystrém method to solve the integral Eq.(6.1), when
the kernel K(z,y) is in a continuous form. In [10], Kumar and Sloan, and in [11],
Kumar used and developed a new collocation type method to solve the formula
(6.1) in L3[0, 1], numerically. In [12], the solution of Eq.(6.1) using degenerate ker-
nel method is obtained by Kaneko and Xu. In [13], Hacia obtained, using numerical
method, approximately the solution of the system of Hammerstein integral equa-
tions in a Banach space. In Hilbert space Hacia, in [14], using projection iteration
methods, obtained the solution of nonlinear operator equations of Hammerstein type
of (6.1). In [15] and [16,17], Bannas and Emmanuele respectively have studied the
type of problem of Eq.(6.1) in L;[0,1] when Z = x(x1) their analysis depend on the
technique of noncompactness.

(2) One dimensional Fredholm integral equation with discontiuous kernel :
IfinEq.(3.2), k = 0, yO(y, 6O (1)) = ¢O(y) = (1), @ = [-1,1] and z = z(z1),
we have the following integral equation

1
(62) ub(z) = f(z) + X /_ K@vswdy, (N = 2@ FO0),

The formula (6.2) represents a Fredholm integral equation of the second kind. When
the kernel takes the two forms

_ J (njz—y))9, ¢g=1,2,..,N,
(63) K(x,y)_‘{ |$_y|—u’ 0<v<l1.
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Abdou et al., in [18], obtained numerically the solution of (6.2) with the kernel (6.3)
using Toeplitz matrix and product Nystrém method. Using a numerical method
and orthogonal polynomials of Legendre series Abdou and Nasr in [19], obtained
the solution of (6.2) when the kernel takes a Cauchy form, K(z,y) = xlfy If we
let in (6.3), ¢ = 1 and differentiate (6.2) with respect to z, we obtain the following
integro-differential equation with Cauchy kernel

1
(6.4) #M - )\’/ Mdy = h(z).
dx 1T—y
Using in (6.4), the substitution y = 2u — 1, = 2v — 1, we have
) !
(6.5) =\ A

Frankel, in his work [20], obtained the solution of (6.5) under the condition ©(0) =
©(1) = 0, using Chebyshev polynomials. Eq.(6.5) has appeared in both combined

!

2 du = g(u), ow) = 2h2o-1), 20 = 2, 20-1) = O()

infrared gaseous radiation and molecular conduction.
(3) Two and three dimensional integral equation :

Let in Eq.(3.2), k = 0, YO (y,¢O(y)) = ¢O(y) = ¢(y) and = = Z(x1, 22, x3),
then we have

(6.6) uﬂ%w=ﬂaw+A[LK@—&y—mM&m&M-

() It
1

ViE—82+@y—n?

Q={(z,y,2) €Q: V2 +y? <a, z=0},
we have an integral equation of the second kind with potential kernel. This case was
discussed and solved by Abdou, in [21]. Also, Abdou in [22], discussed the structure
resolvent of the integral equation with potential kernel.
(ii) If,
K@-&y—n)=[z-*+@-n%" 2= {(z,9,2) € 2: Va2 +¢? <0, 2=0}.

The integral equation was investigated from the semi-symmetric Hertz problem for

Kiz—-&y—n)=

and

two different elastic materials in three-dimensional when the modules of elasticity
is changing according to the power law o; = Koe! (0 < v < 1), where o; and
€i, © = 1,2, 3, are the stress and strain rate intensities respectively, while Ky, v, are
physical constants. Abdou and Salma, in [23], discussed the integral equation of the



ON A DISCUSSION OF NONLINEAR INTEGRAL EQUATION 15

second kind with generalized potential kernel in the contact problems in the theory
of elasticity and established its solution.

(iii) Let in (1.1),

1

'Y(T?yaqb(yaT)) = ¢(y,7), F(t)T) =1, K(:L' —&y— n) = \/(x — 6)2 ¥ (y _ 77)2’

Q= {(:c,y,z) €N:|z| < oo, |y < oo, z=0},

we have the following integral equation

o(&n,7)
67)  pdla,u,8) = f(z,y,t) + X / I dédndr.
Ve =82+ (y—n)?
The integral Eq.(6.7) is established from the three-dimensional half-space of contact

problem. To construct the general solution of (6.7), we use the following Fourier
integral transformations

(68)  galz,t) = / " $(a,y, e Vdy, falz,t) = / " fay, t)edy.
_ —00
Hence, we obtain the Vc:lterra-Wiener-Hopf integral equation as
69 wbaled) = falw) 2 [ [ Kallale - O)oale,icar
where a is the Fourier parameter, and Ko is the Macdonald kernel (see [24])

(6.10) Kofla(e—€)) = |

__cosay

V(z )2+y

Using the following notations

- U 1 U
(6.11) |alz=u, ol =s,a= }Z&’ U (u,t) = ¢qo (H,t>, g(u,t) = [_Lfa (m,t)

The integral Eq.(6.9) takes the form
t poo
(6.12) W(u,t) — a/ / Ko(|u — s|¥(s, 7)dsdt = g(u, ),
0 Jo
0<u<oo, 0<t<T <00, a<0)

The formula (6.12) represents a mixed type of Volterra-Wiener-Hopf integral equa-
tion of the second kind with Macdonald kernel. Abdou and Badr, in [25], obtained
the general solution of (6.12), using separation of variables method.

(iv) If we let in (1.1), u = 0, ¥(7,y, #(y, 7)) = ¢(y, 7), we have the following integral
equation

(6.13) /0 /Q F(t,7)K (z,5)8(y, 7)dydr = g(x,1),
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under the condition

(6.14) /Q 8(z, t)dz = P(t).

Abdou and Salma, in [26], obtained many spectral relationships for the Volterra-
Fredholm integral equation of the first kind, when the kernel takes different forms.
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