Browse > Article

AN APPLICATION OF DARBO'S FIXED POINT THEOREM TO A NONLINEAR QUADRATIC INTEGRAL EQUATION OF VOLTERRA TYPE  

Liu, Zeqing (DEPARTMENT OF MATHEMATICS, LIAONING NORMAL UNIVERSITY)
Ume, Jeong-Sheok (DEPARTMENT OF APPLIED MATHEMATICS, CHANGWON NATIONAL UNIVERSITY)
Kang, Shin-Min (DEPARTMENT OF MATHEMATICS AND RESEARCH INSTITUTE OF NATURAL SCIENCE, GYEONGSANG NATIONAL UNIVERSITY)
Publication Information
The Pure and Applied Mathematics / v.17, no.2, 2010 , pp. 175-183 More about this Journal
Abstract
Using Darbo's fixed point theorem, we establish the existence of monotone solutions for a nonlinear quadratic integral equation of Volterra type in the Banach space of real functions defined and continuous on a bounded and closed interval.
Keywords
Darbo's fixed point theorem; measure of noncompactness; nonlinear quadratic integral equation; monotonic solution;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Banas & B. Rzepka: An application of a measure of noncompactness in the study of asymptotic stability, Appl. Math. Lett. 16 (2003), 1-6.   DOI   ScienceOn
2 B. Cahlon and M. Eskin: Existence theorems for an integral equation of the Chandrasekhar H-equation with perturbation. J. Math. Anal. Appl. 83 (1981), 159-171.   DOI   ScienceOn
3 C. Corduneanu: Integral equations and applications. Cambridge University Press, Cambridge, MA, 1991.
4 G. Darbo: Punti uniti in transformazioni a condominio non compatto. Rend. Sem. Mat. Univ. Padova, 24 (1955), 84-92.
5 S. Hu, M. Khavani & W. Zhuang: Integral equations arising in the kinetic theory of gases. Appl. Anal. 34 (1989), 261-266.   DOI   ScienceOn
6 D. O'Regan & M. Meehan: Existence theory for nonlinear integral and integrodifferential equations. Kluwer Academic, Dordrecht, 1998.
7 J. Banas, J. Rocha & K.B. Sadarangani: Solvability of a nonlinear integral equation of Volterra type. J. Comput. Appl. Math. 157 (2003), 31-48.   DOI   ScienceOn
8 J. Banas & B. Rzepka: On existence and asymptotic stability of solutions of a nonlinear integral equation. J. Math. Anal. Appl. 284 (2003), 165-173.   DOI   ScienceOn
9 J. Banas & L. Olszowy: Measures of noncompactness related to monotonicity. Comment. Math. 41 (2001), 13-23.
10 J. Banas, J.R. Rodriquez & K. Sadarangani: On a nonlinear quadratic integral equation of Urysohn-Stieltjes type and its applications. Nonlinear Anal. 47 (2001), 1175-1186.   DOI   ScienceOn
11 J. Banas & A. Martinon: Monotonic solutions of a quadratic integral equation of Volterra type. Computers Math. Applic. 47 (2004), 271-279.   DOI   ScienceOn
12 J. Banas & K. Goebel: Measures of noncompactness in Banach spaces. In Lecture Notes in Pure and Applied Math., Volume 60, Marcel Dekker, New York, 1980.
13 J. Banas, M. Lecko & W.G. El-Sayed: Existence theorems for some quadratic integral equations. J. Math. Anal. Appl. 222 (1998), 276-285.   DOI   ScienceOn
14 J. Banas & K. Sadarangani: Solvability of Volterra-Stieltjes operator-integral equations and their applications. Computers Math. Applic. 41 (2001), 1535-1544.   DOI   ScienceOn
15 J. Banas, J.R. Rodriguez & K. Sadarangani: On a class of Urysohn-Stieltjes quadratic integral equations and their applications. J. Comput. Appl. Math. 113 (2000), 35-50.   DOI
16 R.P. Agarwal & D. O'Regan: Global existence for nonlinear operator inclusion. Computers Math. Applic. 38 (1999), 131-139.   DOI   ScienceOn
17 R.P. Agarwal, D. O'Regan & P.J.Y. Wong: Positive solutions of differential, difference and integral equations. Kluwer Academic, Dordrecht, 1999.