Browse > Article
http://dx.doi.org/10.4134/JKMS.2006.43.3.461

THE MEASURE-VALUED DYSON SERIES AND ITS STABILITY THEOREM  

Ryu, Kun-Sik (Department of Mathematics Han Nam University)
Im, Man-Kyu (Department of Mathematics Han Nam University)
Publication Information
Journal of the Korean Mathematical Society / v.43, no.3, 2006 , pp. 461-489 More about this Journal
Abstract
In this article, we establish the existence theorem for measure-valued Dyson series and show that it satisfies the Volterra-type integral equation. Furthermore, we prove the stability theorems for measure-valued Dyson series.
Keywords
analogue of Wiener measure; Bartle integral; Dyson series; measure-valued Feynman-Kac formula; Volterra integral equation; stability theorem;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 H. Bergstrom, Weak convergence of measures, Academic Press, 1982
2 P. Billingsley, Convergence of probability measures, John Wiley & Sons, New York, 1968
3 R. H. Cameron and D. A. Storvick, An operator-valued function space integral and a related integral equation, J. Math. Mech. 18 (1968), 517-552
4 J. Diestel and J. J. Uhl, Vector measures, Mathematical Survey, Amer. Math. Soc. Providence, 1977
5 M. L. Lapidus, The Feynman-Kac formula with a Lebesgue-Stieltjes measure: An inte- gral equation in the general case, Integral Equations Operator Theory 12 (1989), no. 2, 163-210   DOI
6 D. R. Lewis, Integration with respect to vector measure, Pacific J. Math. 33 (1970), no. 1, 157-165   DOI
7 G. G. Okikiolu, Aspect of the theory of bounded linear operators in $L_p$ space, Academic Press, London, 1971
8 K. R. Parthasarathy, Probability measures on metric spaces, Academic Press, New York, 1967
9 W. Rudin, Real and complex analysis, 3rd ed., McGraw-Hill, New York, 1987
10 K. S. Ryu and M. K. Im, An analogue of Wiener measure and its applications, J. Korean Math. Soc. 39 (2002), no. 5, 801-819   DOI   ScienceOn
11 C. Schwarz, Vector measures of bounded variation, Rev. Roum. Math. Pures. ET Appl Tome XVII (1972), no. 10, 1703-1704
12 H. G. Tucker, A graduate course in probability, Academic Press, New York, 1967
13 G. W. Johnson and M. L. Lapidus, The Feynman integral and Feynman's operational calculus, Oxford Mathematical Monographs, Oxford Univ. Press, 2000
14 N. Dunford and J. T. Schwartz, Linear operators, part I, general theory, Pure and Applied Mathematics, Vol. VII, Wiley Interscience, New York, 1958
15 P. R. Halmos, Measure theory, Springer-Verlag, New York, 1950
16 E. Hewitt and K. Stromberg, Real and abstract analysis, Springer-Verlag, New York, 1965
17 I. Kluvanek, Operator valued measures and perturbations of semi-groups, Arch. Rational Mech. Anal. 81 (1983), no. 2, 161-180   DOI
18 I. Kluvanek and G. Knowles, Vector measures and control systems, Math. Stud ies, no. 20, Amsterdam, North-Holland, 1975
19 M. L. Lapidus, The Feynman-Kac formula with a Lebesgue-Stieltjes measure and Feynman's operational calculus, Stud. Appl. Math. 76 (1987), no. 2, 93-132   DOI
20 M. L. Lapidus, Strong product integration of measures and the Feynman-Kac formula with a Lebesgue-Stieltjes measure, Rend. Circ. Math. Palermo (2) Suppl. No. 17 (1987), 271-312
21 K. S. Ryu and M. K. Im, A measure-valued analogue of Wiener measure and the measure-valued Feynman-Kac formula, Trans. Amer. Math. Soc. 354 (2002), no. 12, 4921-4951   DOI   ScienceOn
22 J. Yeh, Inversion of conditional expectations, Pacific J. Math. 52 (1974), no. 2, 631-640   DOI
23 J. Yeh, Stochastic processes and the Wiener integral, Marcel Deckker, New York, 1973
24 D. L. Cohn, Measure theory, Birkhauser, Boston, 1980
25 C. W. Burrill, Measure, integration and probability, McGraw-Hill, New York, 1972
26 G. W. Johnson and M. L. Lapidus, Generalized Dyson series, generalized Feyn- man diagrams, the Feynman integral and Feynman's operational calculus, Memoirs Amer. Math. Soc. 62 (1986), no. 351, 1-78