• Title/Summary/Keyword: Voltage controlled delay line

Search Result 22, Processing Time 0.023 seconds

A Design of an Integer-N Dual-Loop Phase.Delay Locked Loop (이중루프 위상.지연고정루프 설계)

  • Choi, Young-Shig;Choi, Hyek-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.7
    • /
    • pp.1552-1558
    • /
    • 2011
  • In this paper, a dual-loop Integer-N phase-delay locked loop(P DLL) architecture has been proposed using a low power consuming voltage controlled delay line(VCDL). The P DLL can have the LF of one small capacitance instead of the conventional second or third-order LF which occupies a large area. The proposed dual-loop P DLL can have a small gain VCDL by controlling the magnitude of capacitor and charge pump current on the loop of VCDL. The proposed dual-loop P DLL has been designed based on a 1.8V $0.18{\mu}m$ CMOS process and proved by Hspice simulation.

Tunable Composite Right/Left-Handed Delay Line with Large Group Delay for an FMCW Radar Transmitter

  • Park, Yong-Min;Ki, Dong-Wook
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.2
    • /
    • pp.166-170
    • /
    • 2012
  • This paper presents a tunable composite right/left-handed (CRLH) delay line for a delay line discriminator that linearizes modulated frequency sweep in a frequency modulated continuous wave (FMCW) radar transmitter. The tunable delay line consists of 8 cascaded unit cells with series varactor diodes and shunt inductors. The reverse bias voltage of the varactor diode controlled the group delay through its junction capacitance. The measured results demonstrate a group delay of 8.12 ns and an insertion loss of 4.5 dB at 250 MHz, while a control voltage can be used to adjust the group delay by approximately 15 ns. A group delay per unit cell of approximately 1 ns was obtained, which is very large when compared with previously published results. This group delay can be used effectively in FMCW radar transmitters.

Design of an Integer-N Phase.Delay Locked Loop (위상지연을 이용한 Integer-N 방식의 위상.지연고정루프 설계)

  • Choi, Young-Shig;Son, Sang-Woo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.6
    • /
    • pp.51-56
    • /
    • 2010
  • In this paper, a novel Integer-N phase-delay locked loop(P DLL) architecture has been proposed using a voltage controlled delay line(VCDL). The P DLL can have the LF of one small capacitance instead of the conventional second or third-order LF. The size of chip is $255{\mu}m$ $\times$ $935.5{\mu}m$ including the LF. The proposed P DLL has been designed based on a 1.8V $0.18{\mu}m$ CMOS process and proved by HSPICE simulation.

Register Controlled Delay-locked Loop using Delay Monitor Scheme (Delay Monitor Scheme을 사용한 Register Controlled Delay-locked Loop)

  • 이광희;노주영;손상희
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.2
    • /
    • pp.144-149
    • /
    • 2004
  • Register Controlled DLL with fast locking and low-power consumption, is described in this paper. Delay monitor scheme is proposed to achieve the fast locking and inverter is inserted in front of delay line to reduce the power consumption, also. Proposed DLL was fabricated in a 0.6${\mu}{\textrm}{m}$ 1-poly 3-metal CMOS technology. The proposed delay monitor scheme enables the DLL to lock to the external clock within 4 cycles. The power consumption is 36㎽ with 3V supply voltage at 34MHz clock frequency.

Bubble-type Motion Detector Using a Pulsed-mode Oscillator and Delay Line (펄스 모드 발진기와 지연선로를 이용한 버블형 동작감지기)

  • Lee, Ik-Hwan;Kim, Dong-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.3
    • /
    • pp.342-348
    • /
    • 2015
  • This paper presents a new motion detector that has a bubble-layer detection zone using a pulsed-mode oscillator and delay line. The proposed motion detector controls the bubble-layer detection zone with pulse width of transmitted signals and creates IF signals only by reflected signals from the target within the detection zone whose position is determined by time delay of the delay line. The fabricated motion detector uses the pulsed-mode voltage controlled oscillator as a signal source which has a center frequency of 8 GHz, pulse width of 2 nsec and pulse period of 30 nsec. It successfully makes the bubble-layer detection zones at 1 m, 3 m and 5 m distant from itself using two delay lines with 7 nsec and 12 nsec delay, and is also demonstrated to detect the target within the detection zones.

Design of digitally controlled CMOS voltage mode DC-DC buck converter for high resolution duty ratio control (고해상도 듀티비 제어가 가능한 디지털 제어 방식의 CMOS 전압 모드 DC-DC 벅 변환기 설계)

  • Yoon, KwangSub;Lee, Jonghwan
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1074-1080
    • /
    • 2020
  • This paper proposes a digitally controlled buck converter insensitive to process, voltage and temperature and capable of three modes of operation depending on the state of the output voltage. Conventional digital-controlled buck converters utilized A/D converters, counters and delay line circuits for accurate output voltage control, resulting in increasing the number of counter and delay line bits. This problem can be resolved by employing the 8-bit and 16-bit bidirectional shift registers, and this design technique leads a buck converter to be able to control duty ratio up to 128-bit resolution. The proposed buck converter was designed and fabricated with a CMOS 180 nano-meter 1-poly 6-metal process, generating an output voltage of 0.9 to 1.8V with the input voltage range of 2.7V to 3.6V, a ripple voltage of 30mV, and a power efficiency of up to 92.3%. The transient response speed of the proposed circuit was measured to be 4us.

A Low Jitter Delay-Locked Loop for Local Clock Skew Compensation (로컬 클록 스큐 보상을 위한 낮은 지터 성능의 지연 고정 루프)

  • Jung, Chae-Young;Lee, Won-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.2
    • /
    • pp.309-316
    • /
    • 2019
  • In this paper, a low-jitter delay-locked loop that compensates for local clock skew is presented. The proposed DLL consists of a phase splitter, a phase detector(PD), a charge pump, a bias generator, a voltage-controlled delay line(VCDL), and a level converter. The VCDL uses self-biased delay cells using current mode logic(CML) to have insensitive characteristics to temperature and supply noises. The phase splitter generates two reference clocks which are used as the differential inputs of the VCDL. The PD uses the only single clock from the phase splitter because the PD in the proposed circuit uses CMOS logic that consumes less power compared to CML. Therefore, the output of the VCDL is also converted to the rail-to-rail signal by the level converter for the PD as well as the local clock distribution circuit. The proposed circuit has been designed with a $0.13-{\mu}m$ CMOS process. A global CLK with a frequency of 1-GHz is externally applied to the circuit. As a result, after about 19 cycles, the proposed DLL is locked at a point that the control voltage is 597.83mV with the jitter of 1.05ps.

A 12-bit Hybrid Digital Pulse Width Modulator

  • Lu, Jing;Lee, Ho Joon;Kim, Yong-Bin;Kim, Kyung Ki
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • In this paper, a 12-bit high resolution, power and area efficiency hybrid digital pulse width modulator (DPWM) with process and temperature (PT) calibration has been proposed for digital controlled DC-DC converters. The hybrid structure of DPWM combines a 6-bit differential tapped delay line ring-mux digital-to-time converter (DTC) schema and a 6-bit counter-comparator DTC schema, resulting in a power and area saving solution. Furthermore, since the 6-bit differential delay line ring oscillator serves as the clock to the high 6-bit counter-comparator DTC, a high frequency clock is eliminated, and the power is significantly saved. In order to have a simple delay cell and flexible delay time controllability, a voltage controlled inverter is adopted to build the deferential delay cell, which allows fine-tuning of the delay time. The PT calibration circuit is composed of process and temperature monitors, two 2-bit flash ADCs and a lookup table. The monitor circuits sense the PT (Process and Temperature) variations, and the flash ADC converts the data into a digital code. The complete circuits design has been verified under different corners of CMOS 0.18um process technology node.

A Wide-Range Dual-Loop DLL using VCDL with Transmission Gate Inverters (TG Inverter VCDL을 사용한 광대역 Dual-Loop DLL)

  • Lee, Seok-Ho;Kim, Sam-Dong;Hwang, In-Seok
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.829-832
    • /
    • 2005
  • This paper describes a wide-range dual-loop Delay Locked Loop (DLL) using Voltage Controlled Delay Line (VCDL) based on Transmission Gate(TG) inverters. One loop is used when the minimum VCDL delay is greater than a half of $T_{REF}$, the reference clock period. The other loop is initiated when the minimum delay is less than $0.5{\times}T_{REF}$. The proposed VCDL improves the dynamic operation range of a DLL. The DLL with a VCDL of 10 TG inverters provides a lock range from 70MHz to 700MHz when designed using $0.18{\mu}m$ CMOS technology with 1.8 supply voltage. The DLL consumes 11.5mW for locking operation with a 700MHz reference clock. The proposed DLL can be used for high-speed memory devices and processors, communication systems, high-performance display interfaces, etc.

  • PDF

Digital Low-Power High-Band UWB Pulse Generator in 130 nm CMOS Process (130 nm CMOS 공정을 이용한 UWB High-Band용 저전력 디지털 펄스 발생기)

  • Jung, Chang-Uk;Yoo, Hyun-Jin;Eo, Yun-Seong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.7
    • /
    • pp.784-790
    • /
    • 2012
  • In this paper, an all-digital CMOS ultra-wideband(UWB) pulse generator for high band(6~10 GHz) frequency range is presented. The pulse generator is designed and implemented with extremely low power and low complexity. It is designed to meet the FCC spectral mask requirement by using Gaussian pulse shaping circuit and control the center frequency by using CMOS delay line with shunt capacitor. Measurement results show that the center frequency can be controlled from 4.5 GHz to 7.5 GHz and pulse width is 1.5 ns and pulse amplitude is 310 mV peak to peak at 10 MHz pulse repetition frequency(PRF). The circuit is implemented in 0.13 um CMOS process with a core area of only $182{\times}65um^2$ and dissipates the average power of 11.4 mW at an output buffer with 1.5-V supply voltage. However, the core consumes only 0.26 mW except for output buffer.