• Title/Summary/Keyword: Volodin space

Search Result 7, Processing Time 0.019 seconds

On the general volodin space

  • Park, Sang-Gyu;Song, Yong-Jin
    • Communications of the Korean Mathematical Society
    • /
    • v.10 no.3
    • /
    • pp.699-705
    • /
    • 1995
  • We first generalize the Volodin space which Volodin constructed in order to define a new algebraic K-theory. We investigate the topological (homotopy) properties of the general Volodin space. We also provide a theorem which seems to be useful in pure homotopy theory. We prove that $V(*_\alpha G_\alpha, {G_\alpha})$ is simply connected.

  • PDF

THE EQUIVALENCE OF TWO ALGEBARAIC K-THEORIES

  • Song, Yongjin
    • Korean Journal of Mathematics
    • /
    • v.5 no.2
    • /
    • pp.107-112
    • /
    • 1997
  • For a ring R with 1, the higher K-theory of Quillen is defined by the higher homotopy groups of the plus construction of the general linear group of R. On the other hand, the Volodin K-theory is defined by the higher homotopy groups of the Volodin space. In this paper we show that these two K-theories are equivalent. We show that the Volodin space is a homotopy fiber of the acyclic map from BGL(R) to its plus construction.

  • PDF

ON COMPLETE CONVERGENCE FOR ARRAYS OF ROWWISE INDEPENDENT RANDOM ELEMENTS

  • Sung Soo-Hak;Cabrera Manuel Ordonez;Hu Tien-Chung
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.2
    • /
    • pp.467-476
    • /
    • 2007
  • A complete convergence theorem for arrays of rowwise independent random variables was proved by Sung, Volodin, and Hu [14]. In this paper, we extend this theorem to the Banach space without any geometric assumptions on the underlying Banach space. Our theorem also improves some known results from the literature.

COMPLETE CONVERGENCE FOR WEIGHTED SUMS OF RANDOM ELEMENTS

  • Sung, Soo-Hak
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.2
    • /
    • pp.369-383
    • /
    • 2010
  • We obtain a result on complete convergence of weighted sums for arrays of rowwise independent Banach space valued random elements. No assumptions are given on the geometry of the underlying Banach space. The result generalizes the main results of Ahmed et al. [1], Chen et al. [2], and Volodin et al. [14].

COMPLETE CONVERGENCE FOR ARRAYS OF ROWWISE INDEPENDENT RANDOM VARIABLES

  • Hu, Tien-Chung;Sung, Soo-Hak;Volodin, Andrei
    • Communications of the Korean Mathematical Society
    • /
    • v.18 no.2
    • /
    • pp.375-383
    • /
    • 2003
  • Under some conditions on an array of rowwise independent random variables, Hu et at. (1998) obtained a complete convergence result for law of large numbers with rate {a$\_$n/, n $\geq$ 1} which is bounded away from zero. We investigate the general situation for rate {a$\_$n/, n $\geq$ 1) under similar conditions.

ON THE WEAK LAWS WITH RANDOM INDICES FOR PARTIAL SUMS FOR ARRAYS OF RANDOM ELEMENTS IN MARTINGALE TYPE p BANACH SPACES

  • Sung, Soo-Hak;Hu, Tien-Chung;Volodin, Andrei I.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.3
    • /
    • pp.543-549
    • /
    • 2006
  • Sung et al. [13] obtained a WLLN (weak law of large numbers) for the array $\{X_{{ni},\;u_n{\leq}i{\leq}v_n,\;n{\leq}1\}$ of random variables under a Cesaro type condition, where $\{u_n{\geq}-{\infty},\;n{\geq}1\}$ and $\{v_n{\leq}+{\infty},\;n{\geq}1\}$ large two sequences of integers. In this paper, we extend the result of Sung et al. [13] to a martingale type p Banach space.

ON THE CONVERGENCE OF SERIES OF MARTINGALE DIFFERENCES WITH MULTIDIMENSIONAL INDICES

  • SON, TA CONG;THANG, DANG HUNG
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.5
    • /
    • pp.1023-1036
    • /
    • 2015
  • Let {Xn; $n{\succeq}1$} be a field of martingale differences taking values in a p-uniformly smooth Banach space. The paper provides conditions under which the series ${\sum}_{i{\preceq}n}\;Xi$ converges almost surely and the tail series {$Tn={\sum}_{i{\gg}n}\;X_i;n{\succeq}1$} satisfies $sup_{k{\succeq}n}{\parallel}T_k{\parallel}=\mathcal{O}p(b_n)$ and ${\frac{sup_{k{\succeq}n}{\parallel}T_k{\parallel}}{B_n}}{\rightarrow\limits^p}0$ for given fields of positive numbers {bn} and {Bn}. This result generalizes results of A. Rosalsky, J. Rosenblatt [7], [8] and S. H. Sung, A. I. Volodin [11].