Browse > Article
http://dx.doi.org/10.4134/JKMS.2015.52.5.1023

ON THE CONVERGENCE OF SERIES OF MARTINGALE DIFFERENCES WITH MULTIDIMENSIONAL INDICES  

SON, TA CONG (Faculty of Mathematics National University of Hanoi)
THANG, DANG HUNG (Faculty of Mathematics National University of Hanoi)
Publication Information
Journal of the Korean Mathematical Society / v.52, no.5, 2015 , pp. 1023-1036 More about this Journal
Abstract
Let {Xn; $n{\succeq}1$} be a field of martingale differences taking values in a p-uniformly smooth Banach space. The paper provides conditions under which the series ${\sum}_{i{\preceq}n}\;Xi$ converges almost surely and the tail series {$Tn={\sum}_{i{\gg}n}\;X_i;n{\succeq}1$} satisfies $sup_{k{\succeq}n}{\parallel}T_k{\parallel}=\mathcal{O}p(b_n)$ and ${\frac{sup_{k{\succeq}n}{\parallel}T_k{\parallel}}{B_n}}{\rightarrow\limits^p}0$ for given fields of positive numbers {bn} and {Bn}. This result generalizes results of A. Rosalsky, J. Rosenblatt [7], [8] and S. H. Sung, A. I. Volodin [11].
Keywords
p-uniformly smooth Banach spaces; field of martingale differences; convergent of series of random field; tail series of random field;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Rosalsky and A. I. Volodin, On convergence of series of random elements via maximal moment relations with applications to martingale convergence and to convergence of series with p-orthogonal summands, Georgian Math. J. 8 (2001), no. 2, 377-388
2 Correction, Georgian Math. J. 10 (2003), no. 4, 799-802.
3 F. S. Scalora, Abstract martingale convergence theorems, Pacific J. Math. 11 (1961), 347-374.   DOI
4 S. H. Sung and A. I. Volodin, On convergence of series of independent random variables, Bull. Korean Math. Soc. 38 (2001), no. 4, 763-772.
5 Y. S. Chow and H. Teicher, Probability Theory: Independence, Interchangeability, Martingales, 2nd ed., Springer-Verlag, New York, 1988.
6 J. I. Hong and J. Tsay, A strong law of large numbers for random elements in Banach spaces, Southeast Asian Bull. Math. 34 (2010), no. 2, 257-264.
7 N. V. Huan and N. V. Quang, The Doob inequality and strong law of large numbers for multidimensional arrays in general Banach spaces, Kybernetika (Prague) 48 (2012), no. 2, 254-267.
8 E. Nam and A. Rosalsky, On the rate of convergence of series of random variables, Teor. Imovir. Mat. Stat. 52 (1995), 120-131 (in Ukrainian)
9 English translation in: Theory Probab. Math. Statist. 52 (1996), 129-140.
10 G. Pisier, Martingales with values in uniformly convex spaces, Israel J. Math. 20 (1975), no. 3-4, 326-350.   DOI
11 G. Pisier, Probabilistic methods in the geometry of Banach spaces, In: Probability and analysis (Varenna, 1985), 167-241, Lecture Notes in Math., 1206, Springer, Berlin, 1986.
12 A. Rosalsky and J. Rosenblatt, On the rate of convergence of series of Banach space valued random elements, Nonlinear Anal. 30 (1997), no. 7, 4237-4248.   DOI   ScienceOn
13 A. Rosalsky and J. Rosenblatt, On convergence of series of random variables with applications to martingale convergence and to convergence of series with orthogonal summands, Stoch. Anal. Appl. 16 (1998), no. 3, 553-566.   DOI   ScienceOn