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ON THE GENERAL VOLODIN SPACE

SANG GYU CHOI AND YONGIIN SONG*

ABSTRACT. We first generalize the Volodin space which Volodin con-
structed in order to define a new algebraic K-theory. We investigate the
toplogical(homotopy) properties of the general Volodin space. We also
provide a theorem which seems to be useful in pure homotopy theory.
We prove that V(: Ga,{Ga}) is simply connected.

1. Intrduction

Let G be a group. For a collection {Ga} of subgroups of G, the
general Volodin space X({G,}) is defined to be U BG,. It is called so in

[« 4
this paper because Volodin used this space in defining a new algebraic
K-theory. Let G = GL,(R) for a ring R. For a partial ordering o on
{1,--- ,n} the subgroup of triangular matrices is defined by

T(R) = {M € GL.(R) | My; = §;; unless i < 5}
In this case the Volodin space X({T(R)}) = W(GLn(R),{T2(R)})/G
= EBT,‘,’(R) is simply denoted by X,(R). The space X(R) = lim X, (R)

is called the Volodin model for algebraic K-theory. The space
V(GL.(R),{T?(R)}) is used to define Volodin K-theory as follows (cf.

(5], [6]) :
KY(R) := mi1(imV(GLa(R), {TJ(R)}) (i >3)

In the case of hermitian K-theory we also have the Volodin-type K-
theory. In this paper we deal with some homotopy theoretic properties
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of the general Volodin space. In section 2 we review some definitions
and facts about simplicial sets which are not easily collected in the ex-
1st1ng literature. In section 3 we prove that the map W(G,{Gqs}) —

V(G,{Gs}) is a homotopy equivalence. W(G,{Gqa}) and V(G,{Ga})
have their own advantages depending on situations. In Theorem 3.5 we
look closer into the space V(G, {Ga}).

2. Preliminaries

DEFINITION 2.1. Let A be a category whose objects are [n] = {0, 1,

,n}, n >0, and a morphism [m] — [n] is a nondecreasing function.
A is called the simplicial category. A simplicial object is a contravariant
functor from A to a category C which is usually « category of sets,
topological spaces, abelian groups or ringb etc. We denote a simplicial
object X : A — C by X,.. X, denotes X ([n]), which is called the set of
n-simplices. ¢* : X;, — X, denotes X(g : [m] — — [n]). A simplicial map
between two simplicial objects f, : X, — Y, is a natural transformation
from X, to Y,.

There is an alternative definition of simplicial object. A simplicial
object is a collection of objects {_\',,},.,20 together with functions di
X, o> Xn1 (0<i<n)and s; : X;, » Xpy1 (0< 2 <) satisfying the
following relations

(iidj = (lj(l,’ if ¢ <j
Sisy = 88 ifi>g
>j,.1(li if 2 <j
dis; = ddentity if 1 =j,5+1
sydiy if >3 +1.
We call d;’s face maps and s;’s degeneracy maps. A simplicial map
f: X. — Y, is a collection of maps f, : Xo — Y, (n > 0) which
commute with face and degeneracy maps. For a simplicial object X, a
simplex € X is called degenerate if x = s;(z') for some 2’ € X and :.
Otherwise it is called nondegenerate. Let Gps be a category of groups.
A simplicial group means a simplicial object A — Gps. Every stiplicial
object can be regarded as a topological space (actually a C'W-complex)
via its geometric realization.
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DEFINITION 2.2. Let X, be a simplicial object. Let A™ be the n-
simplex. The geometric realization | X, | of X is defined to be the quotient
of [] X, x A" by the following relations: Let z € X, and A : [m] — [n]

n>0 .
in A. Then ()\*:c,(tg,--- ,tm)) ~ (:c,/\*(tg,~- ,tm)). We may think of
[m] as vertices of A™, s0 A, : A™ — A" is a linear extension of A on
barycentric coordinates. |X,] is clearly a CW-complex.

EXAMPLE 2.3. (Classifying space of a category) let C be a small cat-
egory. Then we can form a simplicial set B,(, which is called bar con-
struction (or nerve) of C : Let BoC = 0bj(C). For n > 1, n-simplices
B,C is a set of all possible chains of morphisms of the form

Ay 2 4, 23 2y A, A; € 0bjC,a; € morC

The :-th face map d; deletes the i-th object and composes maps if nec-
essary. The :-th degeneracy map s; replaces A4; by A; 24, A;. The
classifying space BC is defined by BC = |B.C|. BC may also be re-
garded as the space of commutative diagrams in C. In particular, for a
group G, we may regard G as a category with a single object * and mor-
phisms * % x for all g € G. BG turns out to be the Eilenberg-MacLane
space K(G,1).

For more details of simplicial set and classifying spaces, the readers
refer to 2], [3] and [4].

DEFINITION 2.4. Let C be a Top-like category, i.e., category of sets,
simplicial sets or topological spaces etc. A monad is an endofunctor
F : C — C together with natural transformstions p: FF — F and
n : 1 — F satisfying associativity and unicity ([2], pl0). An object
X in C is a called an F-algebra if there exists a map ev : FX — X
compatible with 4 and 1. An F-functor is a functor G together with
a natural transformation A : GF — G compatible with pand n. In
particular, F itself is an F-functor together with pu: FF — F. Given
an monad F, and F-algebra X and an F-functor G, the two-sided bar
construction B, (G, F, X) is defined to be a simplicial object in € whose
n-simplices are GF™X. The face maps are induced by n:1— F. The
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two-sided bar construction has the following property:

)X - B,(F,F,X)and B,(F,F,X)—= X
1)GX — B.(G,F,FX) and B.(G,F,FX)— X

are inverse homotopy equivalences.

3. The Volodin space

In this section we introduce a simplicial set W(G, {Ga}) and a simpli-
cial complex V(G, {Gqa}) and show that they are homotopy equivalent.
We introuce the Volodin space and state some important properties of
the space. The Volodin space plays an important role in algebraic K-
theory.

DEFINITION 3.1. Let G be a group and {Go} be a family of its sub-
groups. Denote by V(G,{Go}) a simplicial complex whose vertices are
elements of G and go. - ,gp (gi # ¢;) form a p-simplex if and only if
all ¢7'g; lie in the same Gy for some k. Denote by W(G,{Ga}) the
geometric realization of the simplicial set whose p- snnphces are the se-
quences (go,- - - , gp) of elements of G such that all g;~ g] lie in the same
G, and the face and degeneracy maps are omittings and repeatings, re-
spectively. Note that W(G, {Ga}) = LOJB(G,G(,, ), where B(G,Ga,*)

is the two-sided bar construction. The homeomorphism is given by

(g()s‘ v vg])) — (gOsg(;lg]sgl_lggv' v 7gp_—}lgl))

The general Volodin space X({G4}) is defined by U BG4 which equals
W(G, {Ga})/G = U B(x AGal,*

The following theorem may be known to some experts in homotopy the-
ory, but the authors provide the proof because it does not seem to be in
the literature.

THEOREM 3.2. Let W be a CW-complex and V' be a simplicial com-
plex. Let f: W — V be a cellular map. Then if F~YA) is contractible
for every closed simplex A in V', then f is a homotopy equivalence.
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PROOF. Let V; be the i-skeleton of V and let Wi = f~1(V;). We first
show by induction that for each n, for every finite subcomplex V. of
Va, f: W2 = fF7Y(Vo) - V. is a homotopy equivalence. For n = 0,
f i W — Vi is clearly an equivalence for each finite subcomplex V&
of Vo. We assume, by induction, that f : W& = f~Y(V*) — V® is an
equivalence for every finite subcomplex V, of V; for i < n —1. Let
V. be an arbitrary finite subcomplex of V,,. Then Voo = (Vao)m=1
(finite n-simplices) is homotopy equivalent to Wo° by the following
argument : Let K be any n-diemensional subcomplex of V, such that
f: f7Y(Ky) — K; be an equivalence. Let K’ = KoUgan A™ C V,,. Then
we can easily see that f~!(K') — K’isalsoa homotopy equivalence from
the following pushout squares (actually cofibration squares):

f_l(aAn) —_— f_l(A") OA" —— 5 AT

fTUEKy) ——— FYRY Ly — K’
f~Y8A) - 0A™ is an equivalence by induction hypethesis. f~!(A") o
A™ and f~Y(Ky) — K, are also equivalences by our assumptions, so
fUK') = K' is an equivalence. (Actually we are thinking of a cube di-

agram). Hence every finite subcomplex V' of V5 is homotopy equivalent
to W = f~1(V,*). Now for each n we have

Wo =lmWS - lim V. =V, is a homotopy e uivalence.
— n — n
(a3

o

Moreover, we have

W=1lmW, -limV, =V isalso a homotopy equivalence. ()

Theorem 3.2 seems to have some applications in homotopy theory and
simplicial topology. We here have an immediate application.

LEMMA 3.3. The obvious map f : W(G,{Gk}) = V(G,{G}i}) is a

homotopy equivalence.
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PRrOOF. It suffices to show that f~1(A"™) is contractible for each sim-
plex A™ = (go, g1, - »gn) In V(G,{Gi}). It is easy to see that f~1(A")
can be regarded as a simplicial set whose p-simplices are all sequences
(ho,+-+ ,hp) of elements of the set {90,915, +gn}- f~YHA™) is con-
tractible by the following general fact: For a nonempty set X the sim-
plicial set whose p-simplices are all sequences (o, -, r,) of elements of
X (with the same face and degeneracy maps as above) is contractible.

a

Both W(G,{G4}) and V(G,{Ga}) have their own advantages de-
pending on the homotopy theoretic situations. V(G,{(qa}) is more naive
and sometimes more transparent. W(G, {Gq}), on the other hand, is of-
ten easier to work with in dealing with abstract homotopy theory or
homology theory.

We now have some interesting properties of these spaces.

Let G be a group and {G,} be a collection of subgroups of G. Then
from Seifert van-ILampen theorem we get the following

LEMMA 3.4. m X({G4}) is isomorphic to the amalgamated free prod-
uct * Go if the collection {G4} is closed under finite intersection.
(8]

We have some more properties of V(G,{Ga}).

THEOREM 3.5. Let H be a subgroup of G generated by {Ga}. Let
T = xGy. Then we have
o

(a) V(H,{G4}) is a connected component of V(G,{Ga}).
(b) V(T.{G4}) is a universal covering of both X ({Ga})
and V(H. {Ga}).

PROOF. (a) Since every element of H is expressed as a finite product
of elements in some Ggq's, every vertex in V(H,{Gqa}) is joined with 1
by a path. On the other hand if ¢ ¢ H, then g cannot be joined with 1
by a path.
(b) It suffices to show that V(T,{Ga}) is simply connected. Let w be a
loop at 1 in V(T.{G4}). Then w is homotopic to a loop that consists
of 1-simplices. So up to homotopy every path in V(T,{Ga}) can be
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identified with a finite product of elements go's, where go 18 contained
in some G4. Since wis a loop at 1, w is realized as I1 9a=1, 9o € Go.
finite

The group T is a free group modulo some relations. Through finite steps
of reduction using these relations, [] go reduces to 1. Each reduction
happens in some G, which means that it geometrically happens in a
simplex. Hence in each reduction the homotopy type of the loop does
not change. Thus this loop w is homotopic to a trivial loop. O
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