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ON THE CONVERGENCE OF SERIES OF MARTINGALE

DIFFERENCES WITH MULTIDIMENSIONAL INDICES

Ta Cong Son and Dang Hung Thang

Abstract. Let {Xn;n � 1} be a field of martingale differences taking
values in a p-uniformly smooth Banach space. The paper provides con-
ditions under which the series

∑
i�n

Xi converges almost surely and the

tail series {Tn =
∑

i≫n
Xi;n � 1} satisfies supk�n ‖Tk‖ = OP (bn) and

supk�n ‖Tk‖

Bn

P
→ 0 for given fields of positive numbers {bn} and {Bn}.

This result generalizes results of A. Rosalsky, J. Rosenblatt [7], [8] and
S. H. Sung, A. I. Volodin [11].

1. Introduction

Let {Xn;n ≥ 1} be a sequence of random variables taking values in a real
separable Banach space E with norm ‖ · ‖. If the series

∑∞
i=1 Xi converges a.s.,

then the tail series

Tn =
∞
∑

i=n

Xi, n ≥ 1

is well-defined and supk≥n ‖Tk‖
P
→ 0 as n → ∞.

A. Rosalsky, J. Rosenblatt [7], [8] and S. H. Sung, A. I. Volodin [11] inves-

tigated the rate in which supk≥n ‖Tk‖
P
→ 0 as n → ∞. Namely, they provided

conditions under which supk≥n ‖Tk‖ = OP (bn) and
sup

k≥n
‖Tk‖

Bn

P
→ 0, where

(bn) and (Bn) are given sequences of positive numbers.
The aim of this paper is to extend these results to the case where {Xn,Fn;

n ∈ N
d} is a field of E-valued martingale differences. Under the assumption

that E is a p-uniformly smooth Banach space for some 1 ≤ p ≤ 2, we will
provide sufficient conditions ensuring that

∑

n�1 Xn converges, supk�n ‖Tk‖ =

OP (bn),
sup

k�n
‖Tk‖

Bn

P
→ 0 and

∑

n�1
1
|n|P (supk�n ‖Tk‖ > εan) < ∞ for every

ε > 0, where Tn = S −
∑

i�n Xi, {bn}, {Bn}, {an} are given fields of positive
numbers.
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2. Preliminaries and some useful lemmas

Throughout this paper, the symbol C will denote a generic constant (0 <
C < ∞) which is not necessarily the same one in each appearance.

Let E be a real separable Banach space. For a E-valued random variable X
and sub σ-algebra G of F , the conditional expectation E(X |G) is defined anal-
ogously to that in the real-random variable case and enjoys similar properties
(see [10]).

(E, ‖ · ‖) is said to be p-uniformly smooth (1 ≤ p ≤ 2) if there exists a finite
positive constant C such that for all E-valued martingales {Sn; 1 ≤ n ≤ m}

(2.1) E‖Sm‖p ≤ C

m
∑

n=1

E‖Sn − Sn−1‖
p.

Clearly, every separable Banach space is of 1-uniformly smooth. If a real
separable Banach space is of p-uniformly smooth for some 1 < p ≤ 2, then it is
of r-uniformly smooth for all r ∈ [1, p). A Hilbert space is 2-uniformly smooth
and the space Lp is min{p, 2}-uniformly smooth (see [5], [6]).

Let d be a positive integer, the set of all nonnegative integer d-dimensional
lattice points will be denoted by N

d
0 and the set of all positive integer d-

dimensional lattice points will be denoted by N
d. For m = (m1, . . . ,md) ∈ N

d
0,

n = (n1, . . . , nd) ∈ N
d
0, α = (α1, . . . , αd) ∈ N

d
0, denote m+ n = (m1 +

n1, . . . ,md + nd), m− n = (m1 − n1, . . . ,md − nd), |n| = n1 · n2 · · ·nd, ‖n‖ =

min{n1, . . . , nd}, 1 = (1, . . . , 1) ∈ N
d
0,
∨d

i=1(mi < ni) means that there is at
least one of m1 < n1, m2 < n2, . . ., md < nd holds. We write m � n (or
n � m) if mi ≤ ni, 1 ≤ i ≤ d; m ≺ n if m � n and m 6= n; m ≪ n (or n ≫ m

) if
∨d

i=1(mi < ni).
Let (Ω,F , P ) be a probability space, E be a real separable Banach space,

B(E) be the σ-algebra of all Borel sets in E. Let {Xn,1 � m � n � M} be a
(d-dimensional) field of E-valued random variables and {Fn,m � n � M} be
a (d-dimensional) field of nondecreasing sub-σ-algebras of F with respect to
the partial order � on N

d such that Xn is Fn-measurable for all m � n � M,
then {Xn,Fn,m � n � M} is said to be an adapted field.

Let {Xn,Fn,m � n � M} be an adapted field. For n ∈ N
d
0 (m− 1 � n

� M− 1), we adopt the convention that Fn = {∅,Ω} if there exists a positive
i (1 ≤ i ≤ d) such that ni = mi − 1 and set

F (i)
n = σ{Fk : k = (k1, . . . , kd), mj ≤ kj ≤ Mj (j 6= i), and ki = ni}

for all 1 ≤ i ≤ d, and F∗
n = σ{F

(i)
n : 1 ≤ i ≤ d}.

The adapted field {Xn,Fn,m � n � M} is said to be a field of martingale

differences if E(Xn|F
(i)
n−1) = 0 for all m � n � M, 1 ≤ i ≤ d (see [3]).

The adapted field {Xn,Fn,m � n � M} is said to be strong adapted if

E(Xn|F∗
n−1) is F

(i)
n -measurable for all m � n � M, 1 ≤ i ≤ d.
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Remark 2.1. Let {Xn,Fn : m � n � M} be a field of martingale differences.
Then it is strong adapted. Conversely, let {Xn,Fn : m � n � M} be strong
adapted, when d = 1 then {Xn − E(Xn|F∗

n−1), Fn : m ≤ n ≤ M} is a se-
quences of martingale differences, but when d > 1 then {Xn−E(Xn|F

∗
n−1),Fn :

m � n � M} is not necessarily a field of martingale differences, because Xn −
E(Xn|F∗

n−1) may not be Fn-measurable.

The adapted field {Xn,Fn,m � n � M} is said to be strong∗ adapted if
{XnIA,Fn,m � n � M} is strong adapted for all A ∈ σ(Xn).

Clearly, when {Xn,Fn,m � n � M} is a field of martingale differences, then
it is not necessarily a strong∗ adapted field.

The adapted field {Xn,Fn,m � n � M} is said to be a field of strong∗ mar-

tingale differences if it is a strong∗ adapted and a field of martingale differences.

Remark 2.2. Let {Xn,Fn : m ≤ n ≤ M} be a sequence of martingale differ-

ences, by E(XnIA|F∗
n−1) = E(XnIA|Fn−1) ∈ Fn−1 = F

(1)
n−1. Then {Xn,Fn :

m ≤ n ≤ M} is a strong∗ martingale differences.

Example 1. Let {Xn,n ∈ N
d} be a field of independent random variables with

mean 0. Put Fn = σ(Xk,k � n), then E(Xn|F
i
n−1) = 0, E(XnIA|F

∗
n−1) =

0 for all A ∈ σ(Xn) and n ∈ N
d, 1 ≤ i ≤ d. Therefore, {Xn,Fn,n ∈ N

d} is a
field of strong∗ martingale differences.

Example 2. Let {Xn,Gn : n ≥ 1} be a sequence of martingale differences and
set

Xn = Xn if n = (n, n, . . . , n) and Xn = 0 if n 6= (n, n, . . . , n);

Gn = Gn if n = (n, n, . . . , n) and Gn = {∅,Ω} if n 6= (n, n, . . . , n).

Let Fn = σ{Gk,k � n} for all n � 1. Then {Xn,Fn : n � 1} is a field of
martingale differences. Moreover, for all n � 1, then

E(XnIA|F
∗
n−1) = E(XnIA|Gn−1) ∈ Gn = F i

n

if n = (n, n, . . . , n) and E(XnIA|F∗
n−1) = 0 ∈ F i

n if otherwise, for all A ∈
σ(Xn), so {Xn,Fn : n � 1} is a field of strong∗ martingale differences.

Example 3. Let {Yn,n ∈ N
d} be a field of independent random variables

with mean 0. Put Fn = σ(Yk,k � n) and Xn =
∏

k�n Yk, so {Xn,n ∈ N
d} is

not a field of independent random variables. If EXn < ∞ for all n � 1, then
E(Xn|F i

n) = 0, E(XnIA|F∗
n−1) = E(XnIA) ∈ F i

n for all A ∈ σ(Xn), n � 1,

1 ≤ i ≤ d. Therefore, {Xn,Fn,n ∈ N
d} is a field of strong∗ martingale

differences.

In the sequel the following lemmas are useful.

Lemma 2.3. Let E be a real separable p-uniformly smooth Banach space for

some 1 ≤ p ≤ 2. Then there exits a positive constant C such that for all strong
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adapted fields of E-valued random variables {Xn,Fn : 1 � n � m}, we have

(2.2) E max
1�k�m

‖
∑

1�i�k

(Xi − E(Xi|F
∗
i−1)‖

p ≤ C
∑

1�k�m

E‖Xk‖
p.

Proof. We will show that (2.2) holds by induction. Set

Sk =
∑

1�i�k

(Xi − E(Xi|F
∗
i−1)).

Firstly, for d = 1, note that {max1≤i≤k ‖Si‖,Fk : 1 ≤ k ≤ m} is a nonnegative
sub-martingale. Applying Doob’s inequality and by (2.1), we have (2.2). We
assume that (2.2) holds for d− 1; we will show that it holds for d.

Denote

k = (k1, . . . , kd−1, kd) = (k′, kd); m = (m1, . . . ,md−1,md) = (m′,md);

with k′,m′ ∈ N
d−1; set Ykd

= max1�k′�m′ ‖S(k′;kd)‖ for each 1 ≤ kd ≤ md, we
have

E(S(k′;kd)|F
d
(k′;kd−1))

= E(S(k′;kd−1)|F
d
(k′−1;kd−1))

+
∑

1�k′�m′

(E(X(k′;kd) − E(X(k′;kd)|F
∗
(k′−1,kd−1))|F

d
(k′−1;kd−1)))

= S(k′;kd−1)

and by {S(k′;kd);F(k′;kd) : 1 ≤ kd ≤ md} being a strong adapted random field,

it means that for each 1 � k′ � m′ then {S(k′;kd);F
d
(k′;kd)

: 1 ≤ kd ≤ md} is

a martingale, and we have that {Ykd
;F(k′;kd) : 1 ≤ kd ≤ md} is a nonnegative

sub-martingale sequence. Applying Doob’s inequality, we obtain

E( max
1�(k′,kd)�m

‖S(k′;kd)‖
p) = E( max

1≤kd≤md

Y p
kd
) ≤ C.EY p

md

= C · E( max
1�k′�m′

‖S(k′;md)‖
p).

Set

Xd−1
k′ =

∑

1≤kd≤md

X(k′;kd);F
d−1
k′ = σ(Fd−1

(k′;kd)
: 1 ≤ kd ≤ md).

Note that F i
(k′,kd)

= (Fd−1
k′ )i,F∗

(k′,kd)
= (Fd−1

k′ )∗ for all 1 ≤ kd ≤ md, 1 ≤ i ≤

d − 1, then {Xd−1
k′ ;Fd−1

k′ : 1 ≤ k′ ≤ m′} is a strong adapted field. Therefore,
by the induction assumption,

E max
1�(k′,kd)�m

‖S(k′;kd)‖
p

≤ C ·
∑

1≤k′≤m′

E‖
∑

1≤kd≤md

(X(k′;kd) − E(X(k′;kd)|F
∗
(k′−1,kd−1)))‖

p

≤ C
∑

1�k�m

E‖Xk − E(Xk|F
∗
k−1)‖

p ≤ C
∑

1�k�m

E‖Xk‖
p, by (1.1).

�
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Remark 2.4. If {Xn;n � 1} is a E-valued martingale difference field, from
Lemma 2.3, we obtain Lemma 1.1 in [3] (for p = q). Moreover, by Remark 2.1,
Lemma 2.3 is stronger than Lemma 1.1 in [3] (for p = q).

Lemma 2.5. Let {Xn;n � 1} be a field of E-valued random variables. Then

(2.3) P

(

sup
k�m

‖Xk‖ > ǫ

)

= lim
‖n‖→∞

P

(

max
m�k�n

‖Xk‖ > ǫ

)

,

(2.4) P

(

lim inf
‖n‖→∞

‖Xn‖ > ǫ

)

≤ lim inf
‖n‖→∞

P (‖Xn‖ > ǫ) .

Proof. 1. Remark that for d = 1, by the continuity from below theorem, we
have (2.3). Assume that (2.3) holds for d = D−1 ≥ 1, we with to show that for
d = D. Let m = (m1,m2, . . . ,md) = (m1,m1), k = (k1, k2, . . . , kd) = (k1,k1),
n = (n1, n2, . . . , nd) = (n1,n1), by the continuity from below theorem, we have

P

(

sup
k�m

‖Xk‖ > ǫ

)

= P

(

lim
n1→∞

sup
k1�m1

max
m1≤k1≤n1

‖Xk‖ > ǫ

)

= lim
n1→∞

P

(

sup
k1�m1

max
m1≤k1≤n1

‖Xk‖ > ǫ

)

.

By the induction assumption,

P

(

sup
k�m

‖Xk‖ > ǫ

)

= lim
n1→∞

lim
‖n1‖→∞

P

(

max
m�k�n

‖Xk‖ > ǫ

)

= lim
‖n‖→∞

P

(

max
m�k�n

‖Xk‖ > ǫ

)

.

2. By Theorem 8.1.3 of Chow and Teicher [1] and the same argument as in
the proof of (2.3), we have (2.4). �

Lemma 2.6. Let {Xn;n � 1} be a field of E-valued random variables. Then,

Xn converges a.s. as ‖n‖ → ∞ if only if for all ε > 0,

(2.5) lim
‖n‖→∞

P

(

sup
k�0

‖Xn+k −Xn‖ > ε

)

= 0.

Proof. Necessity. Suppose that Xn → X a.s. as ‖n‖ → ∞. Then (2.5) holds,
by the following inequality

sup
k�0

‖Xn+k −Xn‖ ≤ sup
m�n

‖Xm −X‖+ ‖Xn −X‖.

Sufficiency. Suppose (2.5) holds, let n′ = (n, n, . . . , n), k′ = (k, k, . . . , k), we
have n → ∞ if and only if ‖n′‖ → ∞. Set Yn = Xn′ for all n ≥ 1. Then for an
arbitrary ε > 0,

lim
n→∞

P

(

sup
k≥0

‖Yn+k − Yn‖ > ε

)

= lim
‖n′‖→∞

P

(

sup
k′�0

‖Xn′+k′ −Xn′‖ > ε

)

= 0
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which implies that Yn converges a.s. to a certain random variable X as n → ∞,
i.e., Xn′ converges a.s. to X as ‖n′‖ → ∞. Now we prove Xn → X a.s. as
‖n‖ → ∞.

For an arbitrary ε > 0,

P

(

sup
n�n′

‖Xn −X‖ > ε

)

≤ P

(

sup
n�n′

‖Xn −Xn′‖ > ε/2

)

+ P (‖Xn′ −X‖ > ε/2) → 0 as n → ∞,

so Xn → X a.s. as ‖n‖ → ∞. �

3. Main results

Let {Xn,n � 1} be a field of random variables in Banach space E. Put
Sn =

∑

k�nXk for all n � 1. The series
∑

n�1Xn is said to converge a.s. if

the field of E-valued random variables {Sn,n � 1} converges a.s.. In this case,
put

S = lim
‖n‖→∞

Sn

and

Tn = S − Sn =
∑

k≫n

Xk

(set S0 = 0). We have

sup
k�n

‖Tk‖
P
→ 0 as ‖n‖ → ∞.

The following theorems provide sufficient conditions a.s. for the convergence
of
∑

n�1Xn as well as the rate of convergence to 0 of supk�n ‖Tk‖.

Theorem 3.1. Let E be a p-uniformly smooth Banach space for some 1 ≤
p ≤ 2, {Xn,Fn;n ∈ N

d} be a field of E-valued martingale differences. Let

{bn}, {Bn} be fields of positive constants, such that bn = o(1), Bn = o(1) as

‖n‖ → ∞.

(1) If

(3.1)
∑

k≫n

E‖Xk‖
p = O(bpn),

then
∑

n�1Xn converges a.s. and

sup
k�n

‖Tk‖ = OP (bn).(3.2)

(2) If

(3.3)
∑

k≫n

E‖Xk‖
p = o(Bp

n)
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as ‖n‖ → ∞, then
∑

n�1 Xn converges a.s. and

supk�n ‖Tk‖

Bn

P
→ 0(3.4)

as ‖n‖ → ∞.

Proof. (1) Set Sn =
∑

k�nXk. For an arbitrary ε > 0, set n = (n1, . . . , ni,

. . . , nd) = (ni, ni,n
′
i), k = (k1, . . . , ki, . . . , kd) = (ki, ki,k

′
i), j = (j1, . . . , ji,

. . . , jd) = (ji, ji, j
′
i) for all 1 ≤ i ≤ d. We have that

P

(

sup
k�0

‖Sn+k − Sn‖ > ε

)

= P



sup
k�0

‖
∑

n≪j�n+k

Xj‖ > ε





≤
d
∑

i=1

P



sup
k�0

‖
∑

1�ji�ni

ni+ki
∑

ji=ni

∑

1�j′�n′
i
+k′

i

X(ji,ji,j′i)
‖ > ε/d



 .

Applying the Markov inequality and Lemma 2.3, we obtain

P



sup
k�0

‖
∑

1�ji�ni

ni+ki
∑

ji=ni

∑

1�j′�n′
i
+k′

i

X(ji,ji,j′i)
‖ > ε/d





≤
dp

εp
E



sup
k�0

‖
∑

1�ji�ni

ni+ki
∑

ji=ni

∑

1�j′�n′
i
+k′

i

X(ji,ji,j′i)
‖p





≤ C
∑

1�ji�ni

∞
∑

ji=ni

∑

j′�1

E‖X(ji,ji,j′i)
‖p.

Then, using (3.1) or (3.3), we have that

P

(

sup
k�0

‖Sn+k − Sn‖ > ε

)

≤ C
d
∑

i=1

∑

1�ji�ni

∞
∑

ji=ni

∑

j′�1

E‖X(ji,ji,j′i)
‖p

= C
∑

j≫n

E‖Xj‖
p = o(1) as ‖n‖ → ∞,

which implies that Sn converges a.s as ‖n‖ → ∞ (by Lemma 2.6). Then
∑

n�1Xn converges a.s. Thus, the tail series {Tn =
∑

k≫n Xk} is a well-
defined field of random variables.

Next, to prove that (3.1) implies (3.2), observe that for K > 0

sup
n�1

P

(

supk�n ‖Tk‖

bn
> K

)
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= sup
n�1

P

(

sup
k�n

‖
∑

i≫k

Xi‖ > K.bn

)

= sup
n�1

lim
‖N‖→∞

P



 max
n�k�N

lim
‖M‖→∞

‖
∑

k≪i�M

Xi‖ > K.bn



 (by Lemma 2.5)

≤ sup
n�1

lim
‖N‖→∞

P



 lim
‖M‖→∞

max
n�k�N

‖
∑

k≪i�M

Xi‖ > K.bn





≤ sup
n�1

lim
‖N‖→∞

lim inf
‖M‖→∞

P



 max
n�k�N

‖
∑

k≪i�M

Xi‖ > K.bn



 (by Lemma 2.5)

≤ sup
n�1

lim inf
‖M‖→∞

P



 max
n�k�M

‖
∑

k≪i�M

Xi‖ > K.bn





≤ sup
n�1

lim inf
‖M‖→∞



P
(

max
n�k�M

‖
∑

n≪i�k

Xi‖ >
K.bn
2

)

+P
(

‖
∑

n≪i�M

Xi‖ >
K.bn
2

)





≤ 2 sup
n�1

lim
‖M‖→∞

P



 max
n�k�M

‖
∑

n≪i�k

Xi‖ >
K.bn
2





≤ sup
n�1

2p+1

Kpbpn
lim

‖M‖→∞
E max

n�k�M
‖
∑

n≪i�k

Xi‖
p (by the Markov inequality)

≤ sup
n�1

2p+1

Kpbpn
lim

‖M‖→∞

∑

n≪i�M

E‖Xi‖
p (by Lemma 2.3)

= sup
n�1

C

Kpbpn

∑

n≪i

E‖Xi‖
p ≤

C

Kp
(by (3.1)) → 0 as K → ∞.

(2) The proof that (3.3) implies (3.4) is the same as that in (1). �

Remark 3.2. It should be noted that:

• In the case d = 1, Theorem 3.1 reduces to Corollary 2 in [9].
• The proof of Theorem 3.1 closely follows the pattern of Theorem 1 in
[8].

• The primary mode of the convergence given by (3.4) of Theorem 3.1
was introduced in [4] in the case d = 1 for the tail series of a convergent
series of random variables.

Example 4. Let {Vn,n � 1} be a field independent, identically distributed,
mean 0 random variables in a p-uniformly smooth Banach space E (1 ≤ p ≤ 2)
such that E‖V1‖p < ∞, let {an,n � 1} be a field of nonzero constants such
that

∑

n�1 |an|
p < ∞, set Xn = anVn for n � 1. Then {Xn,Fn;n � 1} is
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a field of martingale difference. By taking bn = (
∑

i≫n |ai|p)1/pα−1
n , where

{αn,n � 1} is any field of positive numbers, we have that
∑

i≫n E‖Xi‖p

bn
= αnE‖X1‖

p → 0.

If supn�1 αn < ∞, then (3.1) holds, by Theorem 3.1, we have that

sup
k�n

‖Tk‖ = OP (bn).

If αn → 0 as ‖n‖ → ∞, then (3.3) holds, by Theorem 3.1, we have that

supk�n ‖Tk‖

bn

P
→ 0 as ‖n‖ → ∞.

Next, we establish the rate of convergence of series of strong∗ martingale
difference fields, with the field of positive Borel function {φn,n � 1} which
have a property similar to that of the sequence of functions in [2] of Hong and
Tsay, i.e.,

(3.5) Cn

uλn

vλn

≤
Φn(u)

Φn(v)
≤ Dn

uµn

vµn

for all u ≥ v > 0,

where Cn ≥ 1, Dn ≥ 1, λn ≥ 1, 0 < µn ≤ p.
Note that the array of functions {Φn,n � 1} with Φn(x) = xp, p ≥ 1 satisfies

the condition (3.5).

Theorem 3.3. Let E be a p-uniformly smooth Banach space for some 1 ≤ p ≤
2, let {Xn,Fn;n ∈ N

d} be a field of E-valued strong∗ martingale differences. Let

{Φn;n � 1} be a field of positive Borel functions which satisfies the conditions

(3.5) and Φn(u) ≤ Φm(u) for all n ≪ m. Let {bn}, {Bn} be fields of positive

constants, such that Φn(bn) = o(1), Φn(Bn) = o(1) as ‖n‖ → ∞.

(1) If

(3.6)
∑

k≫n

AkEΦk(‖Xk‖) = O(Φn(bn)),

where An = max{ 1
Cn

, Dn}, then
∑

n�1 Xn converges a.s. and the se-

ries {Tn =
∑

k≫n Xk} satisfies the relation

(3.7) sup
k�n

‖Tk‖ = OP (bn).

(2) If

(3.8)
∑

k≫n

AkEΦk(‖Xk‖) = o((Φn(Bn))

as ‖n‖ → ∞ (where An = max{ 1
Cn

, Dn}), then
∑

n�1Xn converges

a.s. and the series {Tn =
∑

k≫n Xk} obeys the limit law

(3.9)
supk�n ‖Tk‖

Bn

P
→ 0 as ‖n‖ → ∞.
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Proof. (1) For each n � 1, set Yn = XnI(‖Xn‖ ≤ 1), Zn = XnI(‖Xn‖ >
1), Un = Yn − E(Yn|F∗

n), Vn = Zn − E(Zn|F∗
n). S1

n =
∑

k�n Uk, and

S2
n =

∑

k�n Vk. Then Xn = Un + Vn and Sn = S1
n + S2

n. Moreover, since

{Xn,Fn,n � 1} is a field of strong∗ martingale differences, it is clear that
{Un,Fn,n � 1} and {Vn,Fn,n � 1} are strong adapted fields.

By the proof of Theorem 3.1, we have

P

(

sup
k�0

‖S1
n+k − S1

n‖ > ε

)

= C
∑

i≫n

E‖Yi‖
p ≤ C

∑

i≫n

E‖Yi‖
µn

≤ C
∑

i≫n

Di ·E
Φi(‖Yi‖)

Φi(1)
≤ C

∑

i≫n

Ai

EΦi(‖Xi‖)

Φi(1)

≤ C
1

Φ1(1)

∑

i≫n

AiEΦn(‖Xi‖) < o(1) as ‖n‖ → ∞.

Then S1
n converges a.s. as ‖n‖ → ∞ (by Lemma 2.6). Next, by the proof of

Theorem 3.1, we have

P

(

sup
k�0

‖S2
n+k − S2

n‖ > ε

)

= C
∑

i≫n

E‖Zi‖ ≤ C
∑

i≫n

E‖Zi‖
λn

≤ C
∑

i≫n

1

Ci

· E
Φi(‖Zi‖)

Φi(1)
≤ C

∑

i≫n

Ai

EΦi(‖Xi‖)

Φi(1)

≤ C
1

Φ1(1)

∑

i≫n

AiEΦn(‖Xi‖) < o(1) as ‖n‖ → ∞.

Then S2
n converges a.s. as ‖n‖ → ∞ (by Lemma 2.6). By Sn = S1

n+S2
n, which

implies Sn converges a.s as ‖n‖ → ∞, then
∑

n�1Xn converges a.s. Thus, the

tail series {Tn =
∑

k≫n Xk;n � 1} is a well-defined field of random variables.
Next, to prove that (3.6) implies (3.7), for each n � 1, and n � i, set

Y ′
i = XiI(‖Xi‖ ≤ bn), Z

′
i = XiI(‖Xi‖ > bn), U ′

n = Y ′
n − E(Y ′

n|F
∗
n), V ′

n =
Z ′
n − E(Z ′

n|F
∗
n). Then Xn = U ′

n + V ′
n. Moreover, by {Xn,Fn,n � 1} being

a strong∗ martingale difference field, then it is clear that {U ′
n,Fn,n � 1} and

{V ′
n,Fn,n � 1} are strong adaped fields.
By the proof of Theorem 3.1, we observe that for K > 0,

sup
n�1

P

(

supk�n ‖Tk‖

bn
> K

)

≤ 2 sup
n�1

lim inf
‖M‖→∞

P

(

maxn�k�M ‖
∑

n≪i�kXi‖

bn
>

K

2

)

≤ 2 sup
n�1

lim
‖M‖→∞

(

P

(

maxn�k�M ‖
∑

n≪i�k U
′
i‖

bn
>

K

4

)

+P

(

maxn�k�M ‖
∑

n≪i�k V
′
i ‖

bn
>

K

4

))
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≤ 2 sup
n�1

lim
M→∞





4p

Kpbpn
E
{

max
n�k�M

‖
∑

n≪i�k

U ′
i‖

p
}

+
4

Kbn
E
{

max
n�k�M

‖
∑

n≪i�k

V ′
i ‖
}





≤ 2 sup
n�1

lim
‖M‖→∞





4p

Kpbpn

∑

n≪i�M

E‖U ′
i‖

p

+
4

Kbn

∑

n≪i�M

E‖V ′
i ‖



 (by Lemma 2.3)

≤ C sup
n�1

(

1

Kp

∑

n≪i

E‖Y ′
i ‖

p

bpn
+

1

K

∑

n≪i

E‖Z ′
i‖

bn

)

≤ C sup
n�1

(

1

Kp

∑

n≪i

E‖Y ′
i ‖

µn

bµn

n

+
1

K

∑

n≪i

E‖Z ′
i‖

λn

bλn

n

)

≤ C sup
n�1

(

1

Kp

∑

i≫n

Di · E
Φi(‖Y ′

i ‖)

Φi(bn)
+

1

K

∑

i≫n

1

Ci

·E
Φi(‖Z ′

i‖)

Φi(bn)

)

≤ C sup
n�1

1

Φn(bn)

(

1

Kp
+

1

K

)

∑

i≫n

AiEΦn(‖Xi‖) < o(1) as K → ∞.

(2) The proof that (3.8) implies (3.9) is the same as that in (1). �

When d = 1, by Remark 2.1, we have the following corollary.

Corollary 3.3.1. Let E be a p-uniformly smooth Banach space for some 1 ≤
p ≤ 2, {Xn,Fn;n ∈ N} be a sequence of E-valued martingale differences. Let

{Φn;n ≥ 1} be a sequence of positive Borel functions which satisfies the follow-

ing two conditions

Cn
uλn

vλn

≤
Φn(u)

Φn(v)
≤ Dn

uµn

vµn

for all u ≥ v > 0,

where Cn ≥ 1, Dn ≥ 1, λn ≥ 1, 0 < µn ≤ p,

Φn(u) ≤ Φm(u) for all n > m.

Let {bn}, {Bn} be sequences of positive constants, such that Φn(bn) = o(1),
Φn(Bn) = o(1).

(1) If
∑

k≥n+1

AkEΦk(‖Xk‖) = O(Φn(bn)),
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then
∑

n≥1 Xn converges a.s. and

sup
k≥n+1

‖Tk‖ = OP (bn),

where Tn =
∑

k≥n+1 Xk.

(2) If
∑

k≥n+1

AkEΦk(‖Xk‖) = o((Φn(Bn)),

then
∑

n≥1 Xn converges a.s. and

supk≥n+1 ‖Tk‖

Bn

P
→ 0,

where Tn =
∑

k≥n+1 Xk.

Remark 3.4. Let {Xn,Fn, n ≥ 1} be a sequence of real-valued independent
random variables with EXn = 0, n ≥ 1. Let {gn(x), n ≥ 1} be a sequence of
functions defined on [0,∞) such that

0 ≤ gn(0) ≤ gn(x), 0 < gn(x) ↑ ∞ as n ↑ ∞ for each x > 0

and
gn(x)

x
↑,

gn(x)

xp
↓ on (0,∞), n ≥ 1, for some 1 < p ≤ 2.

In Corollary 3.3.1, taking Φn = gn for all n ≥ 1, with λn = 1, µn = p, Cn = 1,
Dn = 1, n ≥ 1, we obtain Theorem 2 in [11].

Finally, we establish the rate of complete convergence of the tail series of
martingale difference fields.

Theorem 3.5. Let E be a p-uniformly smooth Banach space for some 1 ≤ p ≤
2, {Xn,Fn;n ∈ N

d} be a field of E-valued martingale differences. Let {an} be

field of positive constants, such that either an ≤ am for all n � m or an ≥ am
for all n < m and supn a2n/a2n+1 ≤ M < ∞. If

(3.10)
∑

n�1

ϕ(n)E‖Xn‖
p < ∞,

where ϕ(n) =
∑

2k≪n
1

a
2k

, then for all ε > 0,

∑

n�1

1

|n|
P (sup

k�n

‖Tk‖ > εan) < ∞.(3.11)

Proof. For all n � 2 then ϕ(n) ≥ 1
b2

> 0, so
∑

k≫n E‖Xk‖p = o(1) as ‖n‖ →

∞. By proof of Theorem 3.1, we have
∑

n�1Xn converges a.s. Thus, the tail

series {Tn =
∑

k≫nXk;n � 1} is a well-defined field of random variables.
Next, to prove that (3.10) implies (3.11), we note that
∑

n�1

1

|n|
P (sup

k�n

‖Tk‖ > εan) =
∑

n�0

∑

2i�n�2i+1

1

|i|
P (sup

k�i

‖Tk‖ > εai)
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≤
∑

n�0

P ( sup
k�2n

‖Tk‖ >
1

M
· εa2n).

Applying Lemma 2.3, Lemma 2.5, the Markov inequality and the same argu-
ment as the proof of Theorem 3.1, we see

∑

n�1

1

|n|
P (sup

k�n

‖Tk‖ > εbn) =
∑

n�0

Mp

εp · ap2n

∑

i≫2n

E‖Xi‖
p

≤ C
∑

n�1

ϕ(n)‖Xn‖
p < ∞.

�

Corollary 3.5.1. Let E be a p-uniformly smooth Banach space for some 1 ≤
p ≤ 2, {Xn,Fn;n ∈ N

d} be a field of E-valued martingale differences. If

(3.12)
∑

n�1

E‖Xn‖
p < ∞,

then for all α > 0, ε > 0,

∑

n�1

1

|n|
P (sup

k�n

‖Tk‖ > ε|n|α) < ∞.(3.13)

Proof. Put an = |n|α then ϕ(n) ≤
∑

n�1
1

|2αn| = (
∑∞

n=1
1

2αn )
d < ∞ so (3.12)

implies (3.10). By Theorem 3.5 we get (3.13). �

Corollary 3.5.2. Let E be a p-uniformly smooth Banach space for some 1 ≤
p ≤ 2, {Xn,Fn;n ∈ N} be a sequence of E-valued martingale differences. If

(3.14)

∞
∑

n=1

E‖Xn‖
p log2 n < ∞,

then for all α > 0, ε > 0,

∞
∑

n=1

1

n
P (sup

k≥n
‖Tk‖ > ε) < ∞.(3.15)

Proof. Put an = 1 then for d = 1 we have ϕ(n) ≤ log2 n. Hence (3.14) implies
(3.10). By Theorem 3.5 we obtain (3.15). �
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Ĭmov̄ir. Mat. Stat. 52 (1995), 120–131 (in Ukrainian); English translation in: Theory
Probab. Math. Statist. 52 (1996), 129–140.

[5] G. Pisier, Martingales with values in uniformly convex spaces, Israel J. Math. 20 (1975),
no. 3-4, 326–350.

[6] , Probabilistic methods in the geometry of Banach spaces, In: Probability and
analysis (Varenna, 1985), 167–241, Lecture Notes in Math., 1206, Springer, Berlin, 1986.

[7] A. Rosalsky and J. Rosenblatt, On the rate of convergence of series of Banach space

valued random elements, Nonlinear Anal. 30 (1997), no. 7, 4237–4248.
[8] , On convergence of series of random variables with applications to martingale

convergence and to convergence of series with orthogonal summands, Stoch. Anal. Appl.
16 (1998), no. 3, 553–566.

[9] A. Rosalsky and A. I. Volodin, On convergence of series of random elements via maxi-

mal moment relations with applications to martingale convergence and to convergence

of series with p-orthogonal summands, Georgian Math. J. 8 (2001), no. 2, 377–388;
Correction, Georgian Math. J. 10 (2003), no. 4, 799–802.

[10] F. S. Scalora, Abstract martingale convergence theorems, Pacific J. Math. 11 (1961),
347–374.

[11] S. H. Sung and A. I. Volodin, On convergence of series of independent random variables,
Bull. Korean Math. Soc. 38 (2001), no. 4, 763–772.

Ta Cong Son

Faculty of Mathematics

National University of Hanoi

334 Nguyen Trai, Hanoi, Vietnam

E-mail address: congson82@gmail.com

Dang Hung Thang

Faculty of Mathematics

National University of Hanoi

334 Nguyen Trai, Hanoi, Vietnam

E-mail address: hungthang.dang53.com


