ON THE CONVERGENCE OF SERIES OF MARTINGALE DIFFERENCES WITH MULTIDIMENSIONAL INDICES

Ta Cong Son and Dang Hung Thang

Abstract

Let $\left\{X_{\mathbf{n}} ; \mathbf{n} \succeq \mathbf{1}\right\}$ be a field of martingale differences taking values in a p-uniformly smooth Banach space. The paper provides conditions under which the series $\sum_{\mathbf{i}} \prec_{\mathbf{n}} X_{\mathbf{i}}$ converges almost surely and the tail series $\left\{T_{\mathbf{n}}=\sum_{\mathbf{i} \gg \mathbf{n}} X_{\mathbf{i}} ; \mathbf{n} \succeq \mathbf{1}\right\}$ satisfies $\sup _{\mathbf{k} \succeq \mathbf{n}}\left\|T_{\mathbf{k}}\right\|=\mathcal{O}_{P}\left(b_{\mathbf{n}}\right)$ and $\frac{\sup _{\mathbf{k} \succeq \mathbf{n}}\left\|T_{\mathbf{k}}\right\|}{B_{\mathbf{n}}} \xrightarrow{P} 0$ for given fields of positive numbers $\left\{b_{\mathbf{n}}\right\}$ and $\left\{B_{\mathbf{n}}\right\}$. This result generalizes results of A. Rosalsky, J. Rosenblatt [7], [8] and S. H. Sung, A. I. Volodin [11].

1. Introduction

Let $\left\{X_{n} ; n \geq 1\right\}$ be a sequence of random variables taking values in a real separable Banach space \mathbb{E} with norm $\|\cdot\|$. If the series $\sum_{i=1}^{\infty} X_{i}$ converges a.s., then the tail series

$$
T_{n}=\sum_{i=n}^{\infty} X_{i}, \quad n \geq 1
$$

is well-defined and $\sup _{k>n}\left\|T_{k}\right\| \xrightarrow{P} 0$ as $n \rightarrow \infty$.
A. Rosalsky, J. Rosenblatt [7], [8] and S. H. Sung, A. I. Volodin [11] investigated the rate in which $\sup _{k \geq n}\left\|T_{k}\right\| \xrightarrow{P} 0$ as $n \rightarrow \infty$. Namely, they provided conditions under which $\sup _{k \geq n}\left\|T_{k}\right\|=\mathcal{O}_{P}\left(b_{n}\right)$ and $\frac{\sup _{k>n}\left\|T_{k}\right\|}{B_{n}} \xrightarrow{P} 0$, where $\left(b_{n}\right)$ and $\left(B_{n}\right)$ are given sequences of positive numbers.

The aim of this paper is to extend these results to the case where $\left\{X_{\mathbf{n}}, \mathcal{F}_{\mathbf{n}}\right.$; $\left.\mathbf{n} \in \mathbb{N}^{d}\right\}$ is a field of \mathbb{E}-valued martingale differences. Under the assumption that \mathbb{E} is a p-uniformly smooth Banach space for some $1 \leq p \leq 2$, we will provide sufficient conditions ensuring that $\sum_{\mathbf{n} \succeq \mathbf{1}} X_{\mathbf{n}}$ converges, $\sup _{\mathbf{k} \succeq \mathbf{n}}\left\|T_{\mathbf{k}}\right\|=$ $\mathcal{O}_{P}\left(b_{\mathbf{n}}\right), \frac{\sup _{\mathbf{k} \succeq \mathbf{n}}\left\|T_{\mathbf{k}}\right\|}{B_{\mathbf{n}}} \xrightarrow{P} 0$ and $\sum_{\mathbf{n} \succeq \mathbf{1}} \frac{1}{\mid \mathbf{n} \mathbf{n}} P\left(\sup _{\mathbf{k} \succeq \mathbf{n}}\left\|T_{\mathbf{k}}\right\|>\varepsilon a_{\mathbf{n}}\right)<\infty$ for every $\varepsilon>0$, where $T_{\mathbf{n}}=S-\sum_{\mathbf{i} \preceq \mathbf{n}} X_{\mathbf{i}},\left\{b_{\mathbf{n}}\right\},\left\{B_{\mathbf{n}}\right\},\left\{a_{\mathbf{n}}\right\}$ are given fields of positive numbers.

[^0]
2. Preliminaries and some useful lemmas

Throughout this paper, the symbol C will denote a generic constant $(0<$ $C<\infty)$ which is not necessarily the same one in each appearance.

Let \mathbb{E} be a real separable Banach space. For a \mathbb{E}-valued random variable X and sub σ-algebra \mathcal{G} of \mathcal{F}, the conditional expectation $E(X \mid \mathcal{G})$ is defined analogously to that in the real-random variable case and enjoys similar properties (see [10]).
$(\mathbb{E},\|\cdot\|)$ is said to be p-uniformly smooth $(1 \leq p \leq 2)$ if there exists a finite positive constant C such that for all \mathbb{E}-valued martingales $\left\{S_{n} ; 1 \leq n \leq m\right\}$

$$
\begin{equation*}
E\left\|S_{m}\right\|^{p} \leq C \sum_{n=1}^{m} E\left\|S_{n}-S_{n-1}\right\|^{p} \tag{2.1}
\end{equation*}
$$

Clearly, every separable Banach space is of 1-uniformly smooth. If a real separable Banach space is of p-uniformly smooth for some $1<p \leq 2$, then it is of r-uniformly smooth for all $r \in[1, p)$. A Hilbert space is 2 -uniformly smooth and the space L_{p} is $\min \{p, 2\}$-uniformly smooth (see [5], [6]).

Let d be a positive integer, the set of all nonnegative integer d-dimensional lattice points will be denoted by \mathbb{N}_{0}^{d} and the set of all positive integer d dimensional lattice points will be denoted by \mathbb{N}^{d}. For $\mathbf{m}=\left(m_{1}, \ldots, m_{d}\right) \in \mathbb{N}_{0}^{d}$, $\mathbf{n}=\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{N}_{0}^{d}, \alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \mathbb{N}_{0}^{d}$, denote $\mathbf{m}+\mathbf{n}=\left(m_{1}+\right.$ $\left.n_{1}, \ldots, m_{d}+n_{d}\right), \mathbf{m}-\mathbf{n}=\left(m_{1}-n_{1}, \ldots, m_{d}-n_{d}\right),|\mathbf{n}|=n_{1} \cdot n_{2} \cdots n_{d},\|\mathbf{n}\|=$ $\min \left\{n_{1}, \ldots, n_{d}\right\}, \mathbf{1}=(1, \ldots, 1) \in \mathbb{N}_{0}^{d}, \bigvee_{i=1}^{d}\left(m_{i}<n_{i}\right)$ means that there is at least one of $m_{1}<n_{1}, m_{2}<n_{2}, \ldots, m_{d}<n_{d}$ holds. We write $\mathbf{m} \preceq \mathbf{n}$ (or $\mathbf{n} \succeq \mathbf{m}$) if $m_{i} \leq n_{i}, 1 \leq i \leq d ; \mathbf{m} \prec \mathbf{n}$ if $\mathbf{m} \preceq \mathbf{n}$ and $\mathbf{m} \neq \mathbf{n} ; \mathbf{m} \ll \mathbf{n}$ (or $\mathbf{n} \gg \mathbf{m}$) if $\bigvee_{i=1}^{d}\left(m_{i}<n_{i}\right)$.

Let (Ω, \mathcal{F}, P) be a probability space, \mathbb{E} be a real separable Banach space, $\mathcal{B}(\mathbb{E})$ be the σ-algebra of all Borel sets in \mathbb{E}. Let $\left\{X_{\mathbf{n}}, \mathbf{1} \preceq \mathbf{m} \preceq \mathbf{n} \preceq \mathbf{M}\right\}$ be a (d-dimensional) field of \mathbb{E}-valued random variables and $\left\{\mathcal{F}_{\mathbf{n}}, \mathbf{m} \preceq \mathbf{n} \preceq \mathbf{M}\right\}$ be a (d-dimensional) field of nondecreasing sub- σ-algebras of \mathcal{F} with respect to the partial order \preceq on \mathbb{N}^{d} such that $X_{\mathbf{n}}$ is $\mathcal{F}_{\mathbf{n}}$-measurable for all $\mathbf{m} \preceq \mathbf{n} \preceq \mathbf{M}$, then $\left\{X_{\mathbf{n}}, \mathcal{F}_{\mathbf{n}}, \mathbf{m} \preceq \mathbf{n} \preceq \mathbf{M}\right\}$ is said to be an adapted field.

Let $\left\{X_{\mathbf{n}}, \mathcal{F}_{\mathbf{n}}, \mathbf{m} \preceq \mathbf{n} \preceq \mathbf{M}\right\}$ be an adapted field. For $\mathbf{n} \in \mathbb{N}_{0}^{d}(\mathbf{m}-\mathbf{1} \preceq \mathbf{n}$ $\preceq \mathbf{M}-\mathbf{1}$), we adopt the convention that $\mathcal{F}_{\mathbf{n}}=\{\emptyset, \Omega\}$ if there exists a positive $i(1 \leq i \leq d)$ such that $n_{i}=m_{i}-1$ and set

$$
\mathcal{F}_{\mathbf{n}}^{(i)}=\sigma\left\{\mathcal{F}_{\mathbf{k}}: \mathbf{k}=\left(k_{1}, \ldots, k_{d}\right), m_{j} \leq k_{j} \leq M_{j}(j \neq i), \text { and } k_{i}=n_{i}\right\}
$$

for all $1 \leq i \leq d$, and $\mathcal{F}_{\mathbf{n}}^{*}=\sigma\left\{\mathcal{F}_{\mathbf{n}}^{(i)}: 1 \leq i \leq d\right\}$.
The adapted field $\left\{X_{\mathbf{n}}, \mathcal{F}_{\mathbf{n}}, \mathbf{m} \preceq \mathbf{n} \preceq \mathbf{M}\right\}$ is said to be a field of martingale differences if $E\left(X_{\mathbf{n}} \mid \mathcal{F}_{\mathbf{n}-1}^{(i)}\right)=0$ for all $\mathbf{m} \preceq \mathbf{n} \preceq \mathbf{M}, 1 \leq i \leq d$ (see [3]).

The adapted field $\left\{X_{\mathbf{n}}, \mathcal{F}_{\mathbf{n}}, \mathbf{m} \preceq \mathbf{n} \preceq \mathbf{M}\right\}$ is said to be strong adapted if $E\left(X_{\mathbf{n}} \mid \mathcal{F}_{\mathbf{n}-\mathbf{1}}^{*}\right)$ is $\mathcal{F}_{\mathbf{n}}^{(i)}$-measurable for all $\mathbf{m} \preceq \mathbf{n} \preceq \mathbf{M}, 1 \leq i \leq d$.

Remark 2.1. Let $\left\{X_{\mathbf{n}}, \mathcal{F}_{\mathbf{n}}: \mathbf{m} \preceq \mathbf{n} \preceq \mathbf{M}\right\}$ be a field of martingale differences. Then it is strong adapted. Conversely, let $\left\{X_{\mathbf{n}}, \mathcal{F}_{\mathbf{n}}: \mathbf{m} \preceq \mathbf{n} \preceq \mathbf{M}\right\}$ be strong adapted, when $d=1$ then $\left\{X_{n}-E\left(X_{n} \mid \mathcal{F}_{n-1}^{*}\right), \mathcal{F}_{n}: m \leq n \leq M\right\}$ is a sequences of martingale differences, but when $d>1$ then $\left\{X_{\mathbf{n}}-E\left(X_{\mathbf{n}} \mid \mathcal{F}_{\mathbf{n}-\mathbf{1}}^{*}\right), \mathcal{F}_{\mathbf{n}}\right.$: $\mathbf{m} \preceq \mathbf{n} \preceq \mathbf{M}\}$ is not necessarily a field of martingale differences, because $X_{\mathbf{n}}-$ $E\left(X_{\mathbf{n}} \mid \mathcal{F}_{\mathbf{n}-\mathbf{1}}^{*}\right)$ may not be $\mathcal{F}_{\mathbf{n}}$-measurable.

The adapted field $\left\{X_{\mathbf{n}}, \mathcal{F}_{\mathbf{n}}, \mathbf{m} \preceq \mathbf{n} \preceq \mathbf{M}\right\}$ is said to be strong* adapted if $\left\{X_{\mathbf{n}} I_{A}, \mathcal{F}_{\mathbf{n}}, \mathbf{m} \preceq \mathbf{n} \preceq \mathbf{M}\right\}$ is strong adapted for all $A \in \sigma\left(X_{\mathbf{n}}\right)$.

Clearly, when $\left\{X_{\mathbf{n}}, \mathcal{F}_{\mathbf{n}}, \mathbf{m} \preceq \mathbf{n} \preceq \mathbf{M}\right\}$ is a field of martingale differences, then it is not necessarily a strong* adapted field.

The adapted field $\left\{X_{\mathbf{n}}, \mathcal{F}_{\mathbf{n}}, \mathbf{m} \preceq \mathbf{n} \preceq \mathbf{M}\right\}$ is said to be a field of strong* martingale differences if it is a strong* adapted and a field of martingale differences.

Remark 2.2. Let $\left\{X_{n}, \mathcal{F}_{n}: m \leq n \leq M\right\}$ be a sequence of martingale differences, by $E\left(X_{n} I_{A} \mid \mathcal{F}_{n-1}^{*}\right)=E\left(X_{n} I_{A} \mid \mathcal{F}_{n-1}\right) \in \mathcal{F}_{n-1}=\mathcal{F}_{n-1}^{(1)}$. Then $\left\{X_{n}, \mathcal{F}_{n}\right.$: $m \leq n \leq M\}$ is a strong* martingale differences.

Example 1. Let $\left\{X_{\mathbf{n}}, \mathbf{n} \in \mathbb{N}^{\mathbf{d}}\right\}$ be a field of independent random variables with mean 0. Put $\mathcal{F}_{\mathbf{n}}=\sigma\left(X_{\mathbf{k}}, \mathbf{k} \preceq \mathbf{n}\right)$, then $E\left(X_{\mathbf{n}} \mid \mathcal{F}_{\mathbf{n}-\mathbf{1}}^{i}\right)=0, E\left(X_{\mathbf{n}} I_{A} \mid \mathcal{F}_{\mathbf{n}-\mathbf{1}}^{*}\right)=$ 0 for all $A \in \sigma\left(X_{\mathbf{n}}\right)$ and $\mathbf{n} \in \mathbb{N}^{d}, 1 \leq i \leq d$. Therefore, $\left\{X_{\mathbf{n}}, \mathcal{F}_{\mathbf{n}}, \mathbf{n} \in \mathbb{N}^{d}\right\}$ is a field of strong* martingale differences.

Example 2. Let $\left\{X_{n}, \mathcal{G}_{n}: n \geq 1\right\}$ be a sequence of martingale differences and set

$$
\begin{gathered}
X_{\mathbf{n}}=X_{n} \text { if } \mathbf{n}=(n, n, \ldots, n) \text { and } X_{\mathbf{n}}=0 \text { if } \mathbf{n} \neq(n, n, \ldots, n) \\
\mathcal{G}_{\mathbf{n}}=\mathcal{G}_{n} \text { if } \mathbf{n}=(n, n, \ldots, n) \text { and } \mathcal{G}_{\mathbf{n}}=\{\emptyset, \Omega\} \text { if } \mathbf{n} \neq(n, n, \ldots, n) .
\end{gathered}
$$

Let $\mathcal{F}_{\mathbf{n}}=\sigma\left\{\mathcal{G}_{\mathbf{k}}, \mathbf{k} \preceq \mathbf{n}\right\}$ for all $\mathbf{n} \succeq \mathbf{1}$. Then $\left\{X_{\mathbf{n}}, \mathcal{F}_{\mathbf{n}}: \mathbf{n} \succeq \mathbf{1}\right\}$ is a field of martingale differences. Moreover, for all $\mathbf{n} \succeq \mathbf{1}$, then

$$
E\left(X_{\mathbf{n}} I_{A} \mid \mathcal{F}_{\mathbf{n}-\mathbf{1}}^{*}\right)=E\left(X_{n} I_{A} \mid \mathcal{G}_{n-1}\right) \in \mathcal{G}_{n}=\mathcal{F}_{\mathbf{n}}^{i}
$$

if $\mathbf{n}=(n, n, \ldots, n)$ and $E\left(X_{\mathbf{n}} I_{A} \mid \mathcal{F}_{\mathbf{n}-\mathbf{1}}^{*}\right)=0 \in \mathcal{F}_{\mathbf{n}}^{i}$ if otherwise, for all $A \in$ $\sigma\left(X_{\mathbf{n}}\right)$, so $\left\{X_{\mathbf{n}}, \mathcal{F}_{\mathbf{n}}: \mathbf{n} \succeq \mathbf{1}\right\}$ is a field of strong* martingale differences.

Example 3. Let $\left\{Y_{\mathbf{n}}, \mathbf{n} \in \mathbb{N}^{d}\right\}$ be a field of independent random variables with mean 0 . Put $\mathcal{F}_{\mathbf{n}}=\sigma\left(Y_{\mathbf{k}}, \mathbf{k} \preceq \mathbf{n}\right)$ and $X_{\mathbf{n}}=\prod_{\mathbf{k} \preceq \mathbf{n}} Y_{\mathbf{k}}$, so $\left\{X_{\mathbf{n}}, \mathbf{n} \in \mathbb{N}^{d}\right\}$ is not a field of independent random variables. If $E X_{\mathbf{n}}<\infty$ for all $\mathbf{n} \succeq \mathbf{1}$, then $E\left(X_{\mathbf{n}} \mid \mathcal{F}_{\mathbf{n}}^{i}\right)=0, E\left(X_{\mathbf{n}} I_{A} \mid \mathcal{F}_{\mathbf{n}-\mathbf{1}}^{*}\right)=E\left(X_{\mathbf{n}} I_{A}\right) \in \mathcal{F}_{\mathbf{n}}^{i}$ for all $A \in \sigma\left(X_{\mathbf{n}}\right), \mathbf{n} \succeq \mathbf{1}$, $1 \leq i \leq d$. Therefore, $\left\{X_{\mathbf{n}}, \mathcal{F}_{\mathbf{n}}, \mathbf{n} \in \mathbb{N}^{d}\right\}$ is a field of strong* martingale differences.

In the sequel the following lemmas are useful.
Lemma 2.3. Let \mathbb{E} be a real separable p-uniformly smooth Banach space for some $1 \leq p \leq 2$. Then there exits a positive constant C such that for all strong
adapted fields of \mathbb{E}-valued random variables $\left\{X_{\mathbf{n}}, \mathcal{F}_{\mathbf{n}}: \mathbf{1} \preceq \mathbf{n} \preceq \mathbf{m}\right\}$, we have

$$
\begin{equation*}
E \max _{\mathbf{1} \preceq \mathbf{k} \preceq \mathbf{m}} \| \sum_{\mathbf{1} \preceq \mathbf{i} \preceq \mathbf{k}}\left(X_{\mathbf{i}}-E\left(X_{\mathbf{i}} \mid \mathcal{F}_{\mathbf{i}-\mathbf{1}}^{*}\right)\left\|^{p} \leq C \sum_{\mathbf{1} \preceq \mathbf{k} \preceq \mathbf{m}} E\right\| X_{\mathbf{k}} \|^{p} .\right. \tag{2.2}
\end{equation*}
$$

Proof. We will show that (2.2) holds by induction. Set

$$
S_{\mathbf{k}}=\sum_{\mathbf{1} \preceq \mathbf{i} \preceq \mathbf{k}}\left(X_{\mathbf{i}}-E\left(X_{\mathbf{i}} \mid \mathcal{F}_{\mathbf{i}-\mathbf{1}}^{*}\right)\right) .
$$

Firstly, for $d=1$, note that $\left\{\max _{1 \leq i \leq k}\left\|S_{i}\right\|, \mathcal{F}_{k}: 1 \leq k \leq m\right\}$ is a nonnegative sub-martingale. Applying Doob's inequality and by (2.1), we have (2.2). We assume that (2.2) holds for $d-1$; we will show that it holds for d.

Denote

$$
\mathbf{k}=\left(k_{1}, \ldots, k_{d-1}, k_{d}\right)=\left(\mathbf{k}^{\prime}, k_{d}\right) ; \mathbf{m}=\left(m_{1}, \ldots, m_{d-1}, m_{d}\right)=\left(\mathbf{m}^{\prime}, m_{d}\right) ;
$$

with $\mathbf{k}^{\prime}, \mathbf{m}^{\prime} \in \mathbb{N}^{d-1}$; set $Y_{k_{d}}=\max _{\mathbf{1} \preceq \mathbf{k}^{\prime} \preceq \mathbf{m}^{\prime}}\left\|S_{\left(\mathbf{k}^{\prime} ; k_{d}\right)}\right\|$ for each $1 \leq k_{d} \leq m_{d}$, we have

$$
\begin{aligned}
& E\left(S_{\left(\mathbf{k}^{\prime} ; k_{d}\right)} \mid \mathcal{F}_{\left(\mathbf{k}^{\prime} ; k_{d}-1\right)}^{d}\right) \\
= & E\left(S_{\left(\mathbf{k}^{\prime} ; k_{d}-1\right)} \mid \mathcal{F}_{\left(\mathbf{k}^{\prime}-\mathbf{1} ; k_{d}-1\right)}^{d}\right) \\
& +\sum_{\mathbf{1} \preceq \mathbf{k}^{\prime} \preceq \mathbf{m}^{\prime}}\left(E\left(X_{\left(\mathbf{k}^{\prime} ; k_{d}\right)}-E\left(X_{\left(\mathbf{k}^{\prime} ; k_{d}\right)} \mid \mathcal{F}_{\left(\mathbf{k}^{\prime}-\mathbf{1}, k_{d}-1\right)}^{*}\right) \mid \mathcal{F}_{\left(\mathbf{k}^{\prime}-\mathbf{1} ; k_{d}-1\right)}^{d}\right)\right) \\
= & S_{\left(\mathbf{k}^{\prime} ; k_{d}-1\right)}
\end{aligned}
$$

and by $\left\{S_{\left(\mathbf{k}^{\prime} ; k_{d}\right)} ; \mathcal{F}_{\left(\mathbf{k}^{\prime} ; k_{d}\right)}: 1 \leq k_{d} \leq m_{d}\right\}$ being a strong adapted random field, it means that for each $\mathbf{1} \preceq \mathbf{k}^{\prime} \preceq \mathbf{m}^{\prime}$ then $\left\{S_{\left(\mathbf{k}^{\prime} ; k_{d}\right)} ; \mathcal{F}_{\left(\mathbf{k}^{\prime} ; k_{d}\right)}^{d}: 1 \leq k_{d} \leq m_{d}\right\}$ is a martingale, and we have that $\left\{Y_{k_{d}} ; \mathcal{F}_{\left(\mathbf{k}^{\prime} ; k_{d}\right)}: 1 \leq k_{d} \leq m_{d}\right\}$ is a nonnegative sub-martingale sequence. Applying Doob's inequality, we obtain

$$
\begin{aligned}
E\left(\max _{\mathbf{1} \preceq\left(\mathbf{k}^{\prime}, k_{d}\right) \preceq \mathbf{m}}\left\|S_{\left(\mathbf{k}^{\prime} ; k_{d}\right)}\right\|^{p}\right) & =E\left(\max _{1 \leq k_{d} \leq m_{d}} Y_{k_{d}}^{p}\right) \leq C \cdot E Y_{m_{d}}^{p} \\
& =C \cdot E\left(\max _{\mathbf{1} \preceq \mathbf{k}^{\prime} \leq \mathbf{m}^{\prime}}\left\|S_{\left(\mathbf{k}^{\prime} ; m_{d}\right)}\right\|^{p}\right) .
\end{aligned}
$$

Set

$$
X_{\mathbf{k}^{\prime}}^{d-1}=\sum_{1 \leq k_{d} \leq m_{d}} X_{\left(\mathbf{k}^{\prime} ; k_{d}\right)} ; \mathcal{F}_{\mathbf{k}^{\prime}}^{d-1}=\sigma\left(\mathcal{F}_{\left(\mathbf{k}^{\prime} ; k_{d}\right)}^{d-1}: 1 \leq k_{d} \leq m_{d}\right) .
$$

Note that $\mathcal{F}_{\left(\mathbf{k}^{\prime}, k_{d}\right)}^{i}=\left(\mathcal{F}_{\mathbf{k}^{\prime}}^{d-1}\right)^{i}, \mathcal{F}_{\left(\mathbf{k}^{\prime}, k_{d}\right)}^{*}=\left(\mathcal{F}_{\mathbf{k}^{\prime}}^{d-1}\right)^{*}$ for all $1 \leq k_{d} \leq m_{d}, 1 \leq i \leq$ $d-1$, then $\left\{X_{\mathbf{k}^{\prime}}^{d-1} ; \mathcal{F}_{\mathbf{k}^{\prime}}^{d-1}: \mathbf{1} \leq \mathbf{k}^{\prime} \leq \mathbf{m}^{\prime}\right\}$ is a strong adapted field. Therefore, by the induction assumption,

$$
\begin{aligned}
& E \max _{\mathbf{1} \preceq\left(\mathbf{k}^{\prime}, k_{d}\right) \preceq \mathbf{m}}\left\|S_{\left(\mathbf{k}^{\prime} ; k_{d}\right)}\right\|^{p} \\
\leq & C \cdot \sum_{\mathbf{1} \leq \mathbf{k}^{\prime} \leq \mathbf{m}^{\prime}} E\left\|\sum_{1 \leq k_{d} \leq m_{d}}\left(X_{\left(\mathbf{k}^{\prime} ; k_{d}\right)}-E\left(X_{\left(\mathbf{k}^{\prime} ; k_{d}\right)} \mid \mathcal{F}_{\left(\mathbf{k}^{\prime}-\mathbf{1}, k_{d}-1\right)}^{*}\right)\right)\right\|^{p} \\
\leq & C \sum_{\mathbf{1} \preceq \mathbf{k} \preceq \mathbf{m}} E\left\|X_{\mathbf{k}}-E\left(X_{k} \mid \mathcal{F}_{\mathbf{k}-\mathbf{1}}^{*}\right)\right\|^{p} \leq C \sum_{\mathbf{1} \preceq \mathbf{k} \preceq \mathbf{m}} E\left\|X_{\mathbf{k}}\right\|^{p}, \quad \text { by }(1.1) .
\end{aligned}
$$

Remark 2.4. If $\left\{X_{\mathbf{n}} ; \mathbf{n} \succeq \mathbf{1}\right\}$ is a \mathbb{E}-valued martingale difference field, from Lemma 2.3, we obtain Lemma 1.1 in [3] (for $p=q$). Moreover, by Remark 2.1, Lemma 2.3 is stronger than Lemma 1.1 in [3] (for $p=q$).
Lemma 2.5. Let $\left\{X_{\mathbf{n}} ; \mathbf{n} \succeq \mathbf{1}\right\}$ be a field of \mathbb{E}-valued random variables. Then

$$
\begin{gather*}
P\left(\sup _{\mathbf{k} \succeq \mathbf{m}}\left\|X_{\mathbf{k}}\right\|>\epsilon\right)=\lim _{\|\mathbf{n}\| \rightarrow \infty} P\left(\max _{\mathbf{m} \preceq \mathbf{k} \preceq \mathbf{n}}\left\|X_{\mathbf{k}}\right\|>\epsilon\right), \tag{2.3}\\
P\left(\liminf _{\|\mathbf{n}\| \rightarrow \infty}\left\|X_{\mathbf{n}}\right\|>\epsilon\right) \leq \liminf _{\|\mathbf{n}\| \rightarrow \infty} P\left(\left\|X_{\mathbf{n}}\right\|>\epsilon\right) . \tag{2.4}
\end{gather*}
$$

Proof. 1. Remark that for $d=1$, by the continuity from below theorem, we have (2.3). Assume that (2.3) holds for $d=D-1 \geq 1$, we with to show that for $d=D$. Let $\mathbf{m}=\left(m_{1}, m_{2}, \ldots, m_{d}\right)=\left(m_{1}, \mathbf{m}_{1}\right), \mathbf{k}=\left(k_{1}, k_{2}, \ldots, k_{d}\right)=\left(k_{1}, \mathbf{k}_{1}\right)$, $\mathbf{n}=\left(n_{1}, n_{2}, \ldots, n_{d}\right)=\left(n_{1}, \mathbf{n}_{1}\right)$, by the continuity from below theorem, we have

$$
\begin{aligned}
P\left(\sup _{\mathbf{k} \succeq \mathbf{m}}\left\|X_{\mathbf{k}}\right\|>\epsilon\right) & =P\left(\lim _{n_{1} \rightarrow \infty} \sup _{\mathbf{k}_{1} \succeq \mathbf{m}_{1}} \max _{m_{1} \leq k_{1} \leq n_{1}}\left\|X_{\mathbf{k}}\right\|>\epsilon\right) \\
& =\lim _{n_{1} \rightarrow \infty} P\left(\sup _{\mathbf{k}_{1} \succeq \mathbf{m}_{1}} \max _{m_{1} \leq k_{1} \leq n_{1}}\left\|X_{\mathbf{k}}\right\|>\epsilon\right)
\end{aligned}
$$

By the induction assumption,

$$
\begin{aligned}
P\left(\sup _{\mathbf{k} \succeq \mathbf{m}}\left\|X_{\mathbf{k}}\right\|>\epsilon\right) & =\lim _{n_{1} \rightarrow \infty} \lim _{\left\|\mathbf{n}_{1}\right\| \rightarrow \infty} P\left(\max _{\mathbf{m} \preceq \mathbf{k} \preceq \mathbf{n}}\left\|X_{\mathbf{k}}\right\|>\epsilon\right) \\
& =\lim _{\|\mathbf{n}\| \rightarrow \infty} P\left(\max _{\mathbf{m} \preceq \mathbf{k} \preceq \mathbf{n}}\left\|X_{\mathbf{k}}\right\|>\epsilon\right) .
\end{aligned}
$$

2. By Theorem 8.1.3 of Chow and Teicher [1] and the same argument as in the proof of (2.3), we have (2.4).
Lemma 2.6. Let $\left\{X_{\mathbf{n}} ; \mathbf{n} \succeq \mathbf{1}\right\}$ be a field of \mathbb{E}-valued random variables. Then, $X_{\mathbf{n}}$ converges a.s. as $\|\mathbf{n}\| \rightarrow \infty$ if only if for all $\varepsilon>0$,

$$
\begin{equation*}
\lim _{\|\mathbf{n}\| \rightarrow \infty} P\left(\sup _{\mathbf{k} \succeq \mathbf{0}}\left\|X_{\mathbf{n}+\mathbf{k}}-X_{\mathbf{n}}\right\|>\varepsilon\right)=0 \tag{2.5}
\end{equation*}
$$

Proof. Necessity. Suppose that $X_{\mathbf{n}} \rightarrow X$ a.s. as $\|\mathbf{n}\| \rightarrow \infty$. Then (2.5) holds, by the following inequality

$$
\sup _{\mathbf{k} \succeq \mathbf{0}}\left\|X_{\mathbf{n}+\mathbf{k}}-X_{\mathbf{n}}\right\| \leq \sup _{\mathbf{m} \succeq \mathbf{n}}\left\|X_{\mathbf{m}}-X\right\|+\left\|X_{\mathbf{n}}-X\right\| .
$$

Sufficiency. Suppose (2.5) holds, let $\mathbf{n}^{\prime}=(n, n, \ldots, n), \mathbf{k}^{\prime}=(k, k, \ldots, k)$, we have $n \rightarrow \infty$ if and only if $\left\|\mathbf{n}^{\prime}\right\| \rightarrow \infty$. Set $Y_{n}=X_{\mathbf{n}^{\prime}}$ for all $n \geq 1$. Then for an arbitrary $\varepsilon>0$,

$$
\lim _{n \rightarrow \infty} P\left(\sup _{k \geq 0}\left\|Y_{n+k}-Y_{n}\right\|>\varepsilon\right)=\lim _{\left\|\mathbf{n}^{\prime}\right\| \rightarrow \infty} P\left(\sup _{\mathbf{k}^{\prime} \succeq \mathbf{0}}\left\|X_{\mathbf{n}^{\prime}+\mathbf{k}^{\prime}}-X_{\mathbf{n}^{\prime}}\right\|>\varepsilon\right)=0
$$

which implies that Y_{n} converges a.s. to a certain random variable X as $n \rightarrow \infty$, i.e., $X_{\mathbf{n}^{\prime}}$ converges a.s. to X as $\left\|\mathbf{n}^{\prime}\right\| \rightarrow \infty$. Now we prove $X_{\mathbf{n}} \rightarrow X$ a.s. as $\|\mathbf{n}\| \rightarrow \infty$.

For an arbitrary $\varepsilon>0$,

$$
\begin{aligned}
P\left(\sup _{\mathbf{n} \succeq \mathbf{n}^{\prime}}\left\|X_{\mathbf{n}}-X\right\|>\varepsilon\right) \leq & P\left(\sup _{\mathbf{n} \succeq \mathbf{n}^{\prime}}\left\|X_{\mathbf{n}}-X_{\mathbf{n}^{\prime}}\right\|>\varepsilon / 2\right) \\
& +P\left(\left\|X_{\mathbf{n}^{\prime}}-X\right\|>\varepsilon / 2\right) \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

so $X_{\mathbf{n}} \rightarrow X$ a.s. as $\|\mathbf{n}\| \rightarrow \infty$.

3. Main results

Let $\left\{X_{\mathbf{n}}, \mathbf{n} \succeq \mathbf{1}\right\}$ be a field of random variables in Banach space \mathbb{E}. Put $S_{\mathbf{n}}=\sum_{\mathbf{k} \preceq \mathbf{n}} X_{\mathbf{k}}$ for all $\mathbf{n} \succeq \mathbf{1}$. The series $\sum_{\mathbf{n} \succeq \mathbf{1}} X_{\mathbf{n}}$ is said to converge a.s. if the field of \mathbb{E}-valued random variables $\left\{S_{\mathbf{n}}, \mathbf{n} \succeq \mathbf{1}\right\}$ converges a.s.. In this case, put

$$
S=\lim _{\|\mathbf{n}\| \rightarrow \infty} S_{\mathbf{n}}
$$

and

$$
T_{\mathbf{n}}=S-S_{\mathbf{n}}=\sum_{\mathbf{k} \gg \mathbf{n}} X_{\mathbf{k}}
$$

$\left(\right.$ set $\left.S_{\mathbf{0}}=0\right)$. We have

$$
\sup _{\mathbf{k} \succeq \mathbf{n}}\left\|T_{\mathbf{k}}\right\| \xrightarrow{P} 0 \quad \text { as } \quad\|\mathbf{n}\| \rightarrow \infty
$$

The following theorems provide sufficient conditions a.s. for the convergence of $\sum_{\mathbf{n} \succeq \mathbf{1}} X_{\mathbf{n}}$ as well as the rate of convergence to 0 of $\sup _{\mathbf{k} \succeq \mathbf{n}}\left\|T_{\mathbf{k}}\right\|$.
Theorem 3.1. Let \mathbb{E} be a p-uniformly smooth Banach space for some $1 \leq$ $p \leq 2,\left\{X_{\mathbf{n}}, \mathcal{F}_{\mathbf{n}} ; \mathbf{n} \in \mathbb{N}^{d}\right\}$ be a field of \mathbb{E}-valued martingale differences. Let $\left\{b_{\mathbf{n}}\right\},\left\{B_{\mathbf{n}}\right\}$ be fields of positive constants, such that $b_{\mathbf{n}}=o(1), B_{\mathbf{n}}=o(1)$ as $\|\mathbf{n}\| \rightarrow \infty$.
(1) If

$$
\begin{equation*}
\sum_{\mathbf{k} \gg \mathbf{n}} E\left\|X_{\mathbf{k}}\right\|^{p}=\mathcal{O}\left(b_{\mathbf{n}}^{p}\right) \tag{3.1}
\end{equation*}
$$

then $\sum_{\mathbf{n} \succeq \mathbf{1}} X_{\mathbf{n}}$ converges a.s. and

$$
\sup _{\mathbf{k} \succeq \mathbf{n}}\left\|T_{\mathbf{k}}\right\|=\mathcal{O}_{P}\left(b_{\mathbf{n}}\right)
$$

(2) If

$$
\begin{equation*}
\sum_{\mathbf{k} \gg \mathbf{n}} E\left\|X_{\mathbf{k}}\right\|^{p}=o\left(B_{\mathbf{n}}^{p}\right) \tag{3.3}
\end{equation*}
$$

$$
\text { as }\|\mathbf{n}\| \rightarrow \infty, \text { then } \sum_{\mathbf{n} \succeq \mathbf{1}} X_{\mathbf{n}} \text { converges a.s. and }
$$

$$
\begin{equation*}
\frac{\sup _{\mathbf{k} \succeq \mathbf{n}}\left\|T_{\mathbf{k}}\right\|}{B_{\mathbf{n}}} \xrightarrow{P} 0 \tag{3.4}
\end{equation*}
$$

as $\|\mathbf{n}\| \rightarrow \infty$.
Proof. (1) Set $S_{\mathbf{n}}=\sum_{\mathbf{k} \succeq \mathbf{n}} X_{\mathbf{k}}$. For an arbitrary $\varepsilon>0$, set $\mathbf{n}=\left(n_{1}, \ldots, n_{i}\right.$, $\left.\ldots, n_{d}\right)=\left(\mathbf{n}_{i}, n_{i}, \mathbf{n}_{i}^{\prime}\right), \mathbf{k}=\left(k_{1}, \ldots, k_{i}, \ldots, k_{d}\right)=\left(\mathbf{k}_{i}, k_{i}, \mathbf{k}^{\prime}{ }_{i}\right), \mathbf{j}=\left(j_{1}, \ldots, j_{i}\right.$, $\left.\ldots, j_{d}\right)=\left(\mathbf{j}_{i}, j_{i}, \mathbf{j}^{\prime}{ }_{i}\right)$ for all $1 \leq i \leq d$. We have that

$$
\begin{aligned}
& P\left(\sup _{\mathbf{k} \succeq \mathbf{0}}\left\|S_{\mathbf{n}+\mathbf{k}}-S_{\mathbf{n}}\right\|>\varepsilon\right) \\
= & P\left(\sup _{\mathbf{k} \succeq \mathbf{0}}\left\|\sum_{\mathbf{n}<\mathbf{j} \preceq \mathbf{n}+\mathbf{k}} X_{\mathbf{j}}\right\|>\varepsilon\right) \\
\leq & \sum_{i=1}^{d} P\left(\sup _{\mathbf{k} \succeq \mathbf{0}}\left\|\sum_{\mathbf{1} \preceq \mathbf{j}_{\mathbf{i}} \preceq \mathbf{n}_{\mathbf{i}}} \sum_{j_{i}=n_{i}}^{n_{i}+k_{i}} \sum_{\mathbf{1} \preceq \mathbf{j}^{\prime} \preceq \mathbf{n}_{\mathbf{i}}^{\prime}+\mathbf{k}_{\mathbf{i}}^{\prime}} X_{\left(\mathbf{j}_{i}, j_{i}, \mathbf{j}_{i}^{\prime}\right)}\right\|>\varepsilon / d\right) .
\end{aligned}
$$

Applying the Markov inequality and Lemma 2.3, we obtain

$$
\begin{aligned}
& P\left(\sup _{\mathbf{k} \succeq \mathbf{0}}\left\|\sum_{\mathbf{1} \preceq \mathbf{j}_{\mathbf{i}} \preceq \mathbf{n}_{\mathbf{i}}} \sum_{j_{i}=n_{i}}^{n_{i}+k_{i}} \sum_{\mathbf{1} \preceq \mathbf{j}^{\prime} \preceq \mathbf{n}_{\mathbf{i}}^{\prime}+\mathbf{k}_{\mathbf{i}}^{\prime}} X_{\left(\mathbf{j}_{i}, j_{i}, \mathbf{j}^{\prime}{ }_{i}\right)}\right\|>\varepsilon / d\right) \\
\leq & \frac{d^{p}}{\varepsilon^{p}} E\left(\sup _{\mathbf{k} \succeq \mathbf{0}}\left\|\sum_{\mathbf{1} \preceq \mathbf{j}_{\mathbf{i}} \preceq \mathbf{n}_{\mathbf{i}}} \sum_{j_{i}=n_{i}}^{n_{i}+k_{i}} \sum_{\mathbf{1} \preceq \mathbf{j}^{\prime} \preceq \mathbf{n}_{\mathbf{i}}^{\prime}+\mathbf{k}_{\mathbf{i}}^{\prime}} X_{\left(\mathbf{j}_{i}, j_{i}, \mathbf{j}^{\prime}{ }_{i}\right)}\right\|^{p}\right) \\
\leq & C \sum_{\mathbf{1} \preceq \mathbf{j}_{\mathbf{i}} \preceq \mathbf{n}_{\mathbf{i}}} \sum_{j_{i}=n_{i}} \sum_{\mathbf{j}^{\prime} \succeq \mathbf{1}} E\left\|X_{\left(\mathbf{j}_{i}, j_{i}, \mathbf{j}^{\prime}{ }_{i}\right)}\right\|^{p} .
\end{aligned}
$$

Then, using (3.1) or (3.3), we have that

$$
\begin{aligned}
P\left(\sup _{\mathbf{k} \succeq \mathbf{0}}\left\|S_{\mathbf{n}+\mathbf{k}}-S_{\mathbf{n}}\right\|>\varepsilon\right) & \leq C \sum_{i=1}^{d} \sum_{\mathbf{1} \preceq \mathbf{j}_{\mathbf{i}} \preceq \mathbf{n}_{\mathbf{i}}} \sum_{j_{i}=n_{i}}^{\infty} \sum_{\mathbf{j}^{\prime} \succeq \mathbf{1}} E\left\|X_{\left(\mathbf{j}_{i}, j_{i}, \mathbf{j}^{\prime}{ }_{i}\right)}\right\|^{p} \\
& =C \sum_{\mathbf{j} \gg \mathbf{n}} E\left\|X_{\mathbf{j}}\right\|^{p}=o(1) \text { as }\|\mathbf{n}\| \rightarrow \infty
\end{aligned}
$$

which implies that $S_{\mathbf{n}}$ converges a.s as $\|\mathbf{n}\| \rightarrow \infty$ (by Lemma 2.6). Then $\sum_{\mathbf{n} \succeq \mathbf{1}} X_{\mathbf{n}}$ converges a.s. Thus, the tail series $\left\{T_{\mathbf{n}}=\sum_{\mathbf{k} \gg \mathbf{n}} X_{\mathbf{k}}\right\}$ is a welldefined field of random variables.

Next, to prove that (3.1) implies (3.2), observe that for $K>0$

$$
\sup _{\mathbf{n} \succeq \mathbf{1}} P\left(\frac{\sup _{\mathbf{k} \succeq \mathbf{n}}\left\|T_{\mathbf{k}}\right\|}{b_{\mathbf{n}}}>K\right)
$$

$$
\begin{aligned}
& =\sup _{\mathbf{n} \succeq \mathbf{1}} P\left(\sup _{\mathbf{k} \succeq \mathbf{n}}\left\|\sum_{\mathbf{i} \gg \mathbf{k}} X_{\mathbf{i}}\right\|>K . b_{\mathbf{n}}\right) \\
& =\sup _{\mathbf{n} \succeq \mathbf{1}} \lim _{\|\mathbf{N}\| \rightarrow \infty} P\left(\max _{\mathbf{n} \preceq \mathbf{k} \preceq \mathbf{N}\|\mathbf{M}\| \rightarrow \infty} \lim _{\mathbf{k}<\mathbf{i} \preceq \mathbf{\mathrm { M }}}\left\|\sum_{\mathbf{i}} X_{\mathbf{i}}\right\|>K . b_{\mathbf{n}}\right) \quad \text { (by Lemma 2.5) } \\
& \leq \sup _{\mathbf{n} \succeq \mathbf{1}} \lim _{\|\mathbf{N}\| \rightarrow \infty} P\left(\lim _{\|\mathbf{M}\| \rightarrow \infty} \max _{\mathbf{n} \preceq \mathbf{k} \preceq \mathbf{N}}\left\|\sum_{\mathbf{k} \ll \mathbf{i} \preceq \mathbf{M}} X_{\mathbf{i}}\right\|>K . b_{\mathbf{n}}\right) \\
& \leq \sup _{\mathbf{n} \succeq \mathbf{1}} \lim _{\|\mathbf{N}\| \rightarrow \infty} \liminf _{\|\mathbf{M}\| \rightarrow \infty} P\left(\max _{\mathbf{n} \preceq \mathbf{k} \preceq \mathbf{N}}\left\|\sum_{\mathbf{k}<\mathbf{i} \preceq \mathbf{M}} X_{\mathbf{i}}\right\|>K . b_{\mathbf{n}}\right) \quad \text { (by Lemma 2.5) } \\
& \leq \sup _{\mathbf{n} \succeq \mathbf{1}} \liminf _{\|\mathbf{M}\| \rightarrow \infty} P\left(\max _{\mathbf{n} \preceq \mathbf{k} \leq \mathbf{M}}\left\|\sum_{\mathbf{k} \ll \mathbf{i} \preceq \mathbf{M}} X_{\mathbf{i}}\right\|>K . b_{\mathbf{n}}\right) \\
& \leq \sup _{\mathbf{n} \succeq \mathbf{1}} \liminf _{\|\mathbf{M}\| \rightarrow \infty}\left(P\left(\max _{\mathbf{n} \preceq \mathbf{k} \preceq \mathbf{M}}\left\|\sum_{\mathbf{n}<\mathbf{i} \preceq \mathbf{k}} X_{\mathbf{i}}\right\|>\frac{K \cdot b_{\mathbf{n}}}{2}\right)+P\left(\left\|\sum_{\mathbf{n}<\mathbf{i} \preceq \mathbf{M}} X_{\mathbf{i}}\right\|>\frac{K . b_{\mathbf{n}}}{2}\right)\right) \\
& \leq 2 \sup _{\mathbf{n} \succeq \mathbf{1}} \lim _{\|\mathrm{M}\| \rightarrow \infty} P\left(\max _{\mathbf{n} \preceq \mathbf{k} \preceq \mathbf{M}}\left\|\sum_{\mathbf{n}<\mathbf{i} \preceq \mathbf{k}} X_{\mathbf{i}}\right\|>\frac{K . b_{\mathbf{n}}}{2}\right) \\
& \leq \sup _{\mathbf{n} \succeq \mathbf{1}} \frac{2^{p+1}}{K^{p} b_{\mathbf{n}}^{p}} \lim _{\|\mathbf{M}\| \rightarrow \infty} E \max _{\mathbf{n} \preceq \mathbf{k} \preceq \mathbf{M}}\left\|\sum_{\mathbf{n} \ll \mathbf{i} \preceq \mathbf{k}} X_{\mathbf{i}}\right\|^{p} \text { (by the Markov inequality) } \\
& \leq \sup _{\mathbf{n} \succeq \mathbf{1}} \frac{2^{p+1}}{K^{p} b_{\mathbf{n}}^{p}} \lim _{\|\mathbf{M}\| \rightarrow \infty} \sum_{\mathbf{n} \ll \mathbf{i} \preceq \mathbf{M}} E\left\|X_{\mathbf{i}}\right\|^{p} \quad \text { (by Lemma 2.3) } \\
& =\sup _{\mathbf{n} \succeq \mathbf{1}} \frac{C}{K^{p} b_{\mathbf{n}}^{p}} \sum_{\mathbf{n} \ll \mathbf{i}} E\left\|X_{\mathbf{i}}\right\|^{p} \leq \frac{C}{K^{p}}(\text { by }(3.1)) \rightarrow 0 \text { as } K \rightarrow \infty \text {. }
\end{aligned}
$$

(2) The proof that (3.3) implies (3.4) is the same as that in (1).

Remark 3.2. It should be noted that:

- In the case $d=1$, Theorem 3.1 reduces to Corollary 2 in [9].
- The proof of Theorem 3.1 closely follows the pattern of Theorem 1 in [8].
- The primary mode of the convergence given by (3.4) of Theorem 3.1 was introduced in [4] in the case $d=1$ for the tail series of a convergent series of random variables.
Example 4. Let $\left\{V_{\mathbf{n}}, \mathbf{n} \succeq \mathbf{1}\right\}$ be a field independent, identically distributed, mean 0 random variables in a p-uniformly smooth Banach space $\mathbb{E}(1 \leq p \leq 2)$ such that $E\left\|V_{\mathbf{1}}\right\|^{p}<\infty$, let $\left\{a_{\mathbf{n}}, \mathbf{n} \succeq \mathbf{1}\right\}$ be a field of nonzero constants such that $\sum_{\mathbf{n} \succeq \mathbf{1}}\left|a_{\mathbf{n}}\right|^{p}<\infty$, set $X_{\mathbf{n}}=a_{\mathbf{n}} V_{\mathbf{n}}$ for $\mathbf{n} \succeq \mathbf{1}$. Then $\left\{X_{\mathbf{n}}, \mathcal{F}_{\mathbf{n}} ; \mathbf{n} \succeq \mathbf{1}\right\}$ is
a field of martingale difference. By taking $b_{\mathbf{n}}=\left(\sum_{\mathbf{i} \gg \mathbf{n}}\left|a_{\mathbf{i}}\right|^{p}\right)^{1 / p} \alpha_{\mathbf{n}}^{-1}$, where $\left\{\alpha_{\mathbf{n}}, \mathbf{n} \succeq \mathbf{1}\right\}$ is any field of positive numbers, we have that

$$
\frac{\sum_{\mathbf{i} \gg \mathbf{n}} E\left\|X_{\mathbf{i}}\right\|^{p}}{b_{\mathbf{n}}}=\alpha_{\mathbf{n}} E\left\|X_{\mathbf{1}}\right\|^{p} \rightarrow 0 .
$$

If $\sup _{\mathbf{n} \succeq \mathbf{1}} \alpha_{\mathbf{n}}<\infty$, then (3.1) holds, by Theorem 3.1, we have that

$$
\sup _{\mathbf{k} \succeq \mathbf{n}}\left\|T_{\mathbf{k}}\right\|=\mathcal{O}_{P}\left(b_{\mathbf{n}}\right) .
$$

If $\alpha_{\mathbf{n}} \rightarrow 0$ as $\|\mathbf{n}\| \rightarrow \infty$, then (3.3) holds, by Theorem 3.1, we have that

$$
\frac{\sup _{\mathbf{k} \succeq \mathbf{n}}\left\|T_{\mathbf{k}}\right\|}{b_{\mathbf{n}}} \xrightarrow{P} 0 \text { as }\|\mathbf{n}\| \rightarrow \infty
$$

Next, we establish the rate of convergence of series of strong* martingale difference fields, with the field of positive Borel function $\left\{\phi_{\mathbf{n}}, \mathbf{n} \succeq \mathbf{1}\right\}$ which have a property similar to that of the sequence of functions in [2] of Hong and Tsay, i.e.,

$$
\begin{equation*}
C_{\mathbf{n}} \frac{u^{\lambda_{\mathbf{n}}}}{v^{\lambda_{\mathbf{n}}}} \leq \frac{\Phi_{\mathbf{n}}(u)}{\Phi_{\mathbf{n}}(v)} \leq D_{\mathbf{n}} \frac{u^{\mu_{\mathbf{n}}}}{v^{\mu_{\mathbf{n}}}} \quad \text { for all } \quad u \geq v>0 \tag{3.5}
\end{equation*}
$$

where $C_{\mathbf{n}} \geq 1, D_{\mathbf{n}} \geq 1, \lambda_{\mathbf{n}} \geq 1,0<\mu_{\mathbf{n}} \leq p$.
Note that the array of functions $\left\{\Phi_{\mathbf{n}}, \mathbf{n} \succeq \mathbf{1}\right\}$ with $\Phi_{\mathbf{n}}(x)=x^{p}, p \geq 1$ satisfies the condition (3.5).

Theorem 3.3. Let \mathbb{E} be a p-uniformly smooth Banach space for some $1 \leq p \leq$ 2 , let $\left\{X_{\mathbf{n}}, \mathcal{F}_{\mathbf{n}} ; \mathbf{n} \in \mathbb{N}^{d}\right\}$ be a field of \mathbb{E}-valued strong* martingale differences. Let $\left\{\Phi_{\mathbf{n}} ; \mathbf{n} \succeq \mathbf{1}\right\}$ be a field of positive Borel functions which satisfies the conditions (3.5) and $\Phi_{\mathbf{n}}(u) \leq \Phi_{\mathbf{m}}(u)$ for all $\mathbf{n} \ll \mathbf{m}$. Let $\left\{b_{\mathbf{n}}\right\}$, $\left\{B_{\mathbf{n}}\right\}$ be fields of positive constants, such that $\Phi_{\mathbf{n}}\left(b_{\mathbf{n}}\right)=o(1), \Phi_{\mathbf{n}}\left(B_{\mathbf{n}}\right)=o(1)$ as $\|\mathbf{n}\| \rightarrow \infty$.
(1) If

$$
\begin{equation*}
\sum_{\mathbf{k} \gg \mathbf{n}} A_{\mathbf{k}} E \Phi_{\mathbf{k}}\left(\left\|X_{\mathbf{k}}\right\|\right)=\mathcal{O}\left(\Phi_{\mathbf{n}}\left(b_{\mathbf{n}}\right)\right), \tag{3.6}
\end{equation*}
$$

where $A_{\mathbf{n}}=\max \left\{\frac{1}{C_{\mathbf{n}}}, D_{\mathbf{n}}\right\}$, then $\sum_{\mathbf{n} \succeq \mathbf{1}} X_{\mathbf{n}}$ converges a.s. and the series $\left\{T_{\mathbf{n}}=\sum_{\mathbf{k} \gg \mathbf{n}} X_{\mathbf{k}}\right\}$ satisfies the relation

$$
\begin{equation*}
\sup _{\mathbf{k} \succeq \mathbf{n}}\left\|T_{\mathbf{k}}\right\|=\mathcal{O}_{P}\left(b_{\mathbf{n}}\right) \tag{3.7}
\end{equation*}
$$

(2) If

$$
\begin{equation*}
\sum_{\mathbf{k} \gg \mathbf{n}} A_{\mathbf{k}} E \Phi_{\mathbf{k}}\left(\left\|X_{\mathbf{k}}\right\|\right)=o\left(\left(\Phi_{\mathbf{n}}\left(B_{\mathbf{n}}\right)\right)\right. \tag{3.8}
\end{equation*}
$$

as $\|\mathbf{n}\| \rightarrow \infty\left(\right.$ where $\left.A_{\mathbf{n}}=\max \left\{\frac{1}{C_{\mathbf{n}}}, D_{\mathbf{n}}\right\}\right)$, then $\sum_{\mathbf{n} \succeq \mathbf{1}} X_{\mathbf{n}}$ converges a.s. and the series $\left\{T_{\mathbf{n}}=\sum_{\mathbf{k} \gg \mathbf{n}} X_{\mathbf{k}}^{\mathbf{n}}\right\}$ obeys the limit law

$$
\frac{\sup _{\mathbf{k} \succeq \mathbf{n}}\left\|T_{\mathbf{k}}\right\|}{B_{\mathbf{n}}} \xrightarrow{P} 0 \quad \text { as }\|\mathbf{n}\| \rightarrow \infty .
$$

Proof. (1) For each $\mathbf{n} \succeq \mathbf{1}$, set $Y_{\mathbf{n}}=X_{\mathbf{n}} I\left(\left\|X_{\mathbf{n}}\right\| \leq 1\right), Z_{\mathbf{n}}=X_{\mathbf{n}} I\left(\left\|X_{\mathbf{n}}\right\|>\right.$ 1), $U_{\mathbf{n}}=Y_{\mathbf{n}}-E\left(Y_{\mathbf{n}} \mid \mathcal{F}_{\mathbf{n}}^{*}\right), V_{\mathbf{n}}=Z_{\mathbf{n}}-E\left(Z_{\mathbf{n}} \mid \mathcal{F}_{\mathbf{n}}^{*}\right) . \quad S_{\mathbf{n}}^{1}=\sum_{\mathbf{k} \preceq \mathbf{n}} U_{\mathbf{k}}$, and $S_{\mathbf{n}}^{2}=\sum_{\mathbf{k} \preceq \mathbf{n}} V_{\mathbf{k}}$. Then $X_{\mathbf{n}}=U_{\mathbf{n}}+V_{\mathbf{n}}$ and $S_{\mathbf{n}}=S_{\mathbf{n}}^{1}+S_{\mathbf{n}}^{2}$. Moreover, since $\left\{X_{\mathbf{n}}, \mathcal{F}_{\mathbf{n}}, \mathbf{n} \succeq \mathbf{1}\right\}$ is a field of strong* martingale differences, it is clear that $\left\{U_{\mathbf{n}}, \mathcal{F}_{\mathbf{n}}, \mathbf{n} \succeq \mathbf{1}\right\}$ and $\left\{V_{\mathbf{n}}, \mathcal{F}_{\mathbf{n}}, \mathbf{n} \succeq \mathbf{1}\right\}$ are strong adapted fields.

By the proof of Theorem 3.1, we have

$$
\begin{aligned}
P\left(\sup _{\mathbf{k} \succeq \mathbf{0}}\left\|S_{\mathbf{n}+\mathbf{k}}^{1}-S_{\mathbf{n}}^{1}\right\|>\varepsilon\right) & =C \sum_{\mathbf{i} \gg \mathbf{n}} E\left\|Y_{\mathbf{i}}\right\|^{p} \leq C \sum_{\mathbf{i} \gg \mathbf{n}} E\left\|Y_{\mathbf{i}}\right\|^{\mu_{\mathbf{n}}} \\
& \leq C \sum_{\mathbf{i} \gg \mathbf{n}} D_{\mathbf{i}} \cdot E \frac{\Phi_{\mathbf{i}}\left(\left\|Y_{\mathbf{i}}\right\|\right)}{\Phi_{\mathbf{i}}(1)} \leq C \sum_{\mathbf{i} \gg \mathbf{n}} A_{\mathbf{i}} \frac{E \Phi_{\mathbf{i}}\left(\left\|X_{\mathbf{i}}\right\|\right)}{\Phi_{\mathbf{i}}(1)} \\
& \leq C \frac{1}{\Phi_{\mathbf{1}}(1)} \sum_{\mathbf{i} \gg \mathbf{n}} A_{\mathbf{i}} E \Phi_{\mathbf{n}}\left(\left\|X_{\mathbf{i}}\right\|\right)<o(1) \text { as }\|\mathbf{n}\| \rightarrow \infty .
\end{aligned}
$$

Then $S_{\mathbf{n}}^{1}$ converges a.s. as $\|\mathbf{n}\| \rightarrow \infty$ (by Lemma 2.6). Next, by the proof of Theorem 3.1, we have

$$
\begin{aligned}
P\left(\sup _{\mathbf{k} \succeq \mathbf{0}}\left\|S_{\mathbf{n}+\mathbf{k}}^{2}-S_{\mathbf{n}}^{2}\right\|>\varepsilon\right) & =C \sum_{\mathbf{i} \gg \mathbf{n}} E\left\|Z_{\mathbf{i}}\right\| \leq C \sum_{\mathbf{i} \gg \mathbf{n}} E\left\|Z_{\mathbf{i}}\right\|^{\lambda_{\mathbf{n}}} \\
& \leq C \sum_{\mathbf{i} \gg \mathbf{n}} \frac{1}{C_{\mathbf{i}}} \cdot E \frac{\Phi_{\mathbf{i}}\left(\left\|Z_{\mathbf{i}}\right\|\right)}{\Phi_{\mathbf{i}}(1)} \leq C \sum_{\mathbf{i} \gg \mathbf{n}} A_{\mathbf{i}} \frac{E \Phi_{\mathbf{i}}\left(\left\|X_{\mathbf{i}}\right\|\right)}{\Phi_{\mathbf{i}}(1)} \\
& \leq C \frac{1}{\Phi_{\mathbf{1}}(1)} \sum_{\mathbf{i} \gg \mathbf{n}} A_{\mathbf{i}} E \Phi_{\mathbf{n}}\left(\left\|X_{\mathbf{i}}\right\|\right)<o(1) \text { as }\|\mathbf{n}\| \rightarrow \infty
\end{aligned}
$$

Then $S_{\mathbf{n}}^{2}$ converges a.s. as $\|\mathbf{n}\| \rightarrow \infty$ (by Lemma 2.6). By $S_{\mathbf{n}}=S_{\mathbf{n}}^{1}+S_{\mathbf{n}}^{2}$, which implies $S_{\mathbf{n}}$ converges a.s as $\|\mathbf{n}\| \rightarrow \infty$, then $\sum_{\mathbf{n} \succ \mathbf{1}} X_{\mathbf{n}}$ converges a.s. Thus, the tail series $\left\{T_{\mathbf{n}}=\sum_{\mathbf{k} \gg \mathbf{n}} X_{\mathbf{k}} ; \mathbf{n} \succeq \mathbf{1}\right\}$ is a well-defined field of random variables.

Next, to prove that (3.6) implies (3.7), for each $\mathbf{n} \succeq \mathbf{1}$, and $\mathbf{n} \succeq \mathbf{i}$, set $Y_{\mathbf{i}}^{\prime}=X_{\mathbf{i}} I\left(\left\|X_{\mathbf{i}}\right\| \leq b_{\mathbf{n}}\right), Z_{\mathbf{i}}^{\prime}=X_{\mathbf{i}} I\left(\left\|X_{\mathbf{i}}\right\|>b_{\mathbf{n}}\right), U_{\mathbf{n}}^{\prime}=Y_{\mathbf{n}}^{\prime}-E\left(Y_{\mathbf{n}}^{\prime} \mid \mathcal{F}_{\mathbf{n}}^{*}\right), V_{\mathbf{n}}^{\prime}=$ $Z_{\mathbf{n}}^{\prime}-E\left(Z_{\mathbf{n}}^{\prime} \mid \mathcal{F}_{\mathbf{n}}^{*}\right)$. Then $X_{\mathbf{n}}=U_{\mathbf{n}}^{\prime}+V_{\mathbf{n}}^{\prime}$. Moreover, by $\left\{X_{\mathbf{n}}, \mathcal{F}_{\mathbf{n}}, \mathbf{n} \succeq \mathbf{1}\right\}$ being a strong* martingale difference field, then it is clear that $\left\{U_{\mathbf{n}}^{\prime}, \mathcal{F}_{\mathbf{n}}, \mathbf{n} \succeq \mathbf{1}\right\}$ and $\left\{V_{\mathbf{n}}^{\prime}, \mathcal{F}_{\mathbf{n}}, \mathbf{n} \succeq \mathbf{1}\right\}$ are strong adaped fields.

By the proof of Theorem 3.1, we observe that for $K>0$,

$$
\begin{aligned}
& \quad \sup _{\mathbf{n} \succeq \mathbf{1}} P\left(\frac{\sup _{\mathbf{k} \succeq \mathbf{n}}\left\|T_{\mathbf{k}}\right\|}{b_{\mathbf{n}}}>K\right) \\
& \leq 2 \sup _{\mathbf{n} \succeq \mathbf{1}} \operatorname{liminin}_{\| \rightarrow \infty} P\left(\frac{\max _{\mathbf{n} \preceq \mathbf{k} \preceq \mathbf{M}}\left\|\sum_{\mathbf{n}<\mathbf{i} \preceq \mathbf{k}} X_{\mathbf{i}}\right\|}{b_{\mathbf{n}}}>\frac{K}{2}\right) \\
& \leq 2 \sup _{\mathbf{n} \succeq \mathbf{1}} \lim _{\|\mathbf{M}\| \rightarrow \infty}\left(P\left(\frac{\max _{\mathbf{n} \preceq \mathbf{k} \preceq \mathbf{M}}\left\|\sum_{\mathbf{n}<\mathbf{i} \preceq \mathbf{k}} U_{\mathbf{i}}^{\prime}\right\|}{b_{\mathbf{n}}}>\frac{K}{4}\right)\right. \\
& \\
& \left.\quad+P\left(\frac{\max _{\mathbf{n} \preceq \mathbf{k} \preceq \mathbf{M}}\left\|\sum_{\mathbf{n}<\mathbf{i} \preceq \mathbf{k}} V_{\mathbf{i}}^{\prime}\right\|}{b_{\mathbf{n}}}>\frac{K}{4}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leq 2 \sup _{\mathbf{n} \succeq \mathbf{1}} \lim _{\mathbf{M} \rightarrow \infty}\left(\frac{4^{p}}{K^{p} b_{\mathbf{n}}^{p}} E\left\{\max _{\mathbf{n} \preceq \mathbf{k} \preceq \mathbf{M}}\left\|\sum_{\mathbf{n}<\mathbf{i} \preceq \mathbf{k}} U_{\mathbf{i}}^{\prime}\right\|^{p}\right\}\right. \\
& \left.+\quad \frac{4}{K b_{\mathbf{n}}} E\left\{\max _{\mathbf{n} \preceq \mathbf{k} \preceq \mathbf{M}}\left\|\sum_{\mathbf{n} \ll \mathbf{i} \preceq \mathbf{k}} V_{\mathbf{i}}^{\prime}\right\|\right\}\right) \\
& \leq 2 \sup _{\mathbf{n} \succeq \mathbf{1}} \lim _{\|\mathbf{M}\| \rightarrow \infty}\left(\frac{4^{p}}{K^{p} b_{\mathbf{n}}^{p}} \sum_{\mathbf{n}<\mathbf{i} \preceq \mathbf{M}} E\left\|U_{\mathbf{i}}^{\prime}\right\|^{p}\right. \\
& \left.\quad+\frac{4}{K b_{\mathbf{n}}} \sum_{\mathbf{n} \ll \mathbf{i} \preceq \mathbf{M}} E\left\|V_{\mathbf{i}}^{\prime}\right\|\right) \quad(\text { by Lemma } 2.3) \\
& \leq C \sup _{\mathbf{n} \succeq \mathbf{1}}\left(\frac{1}{K^{p}} \sum_{\mathbf{n} \ll \mathbf{i}} \frac{E\left\|Y_{\mathbf{i}}^{\prime}\right\|^{p}}{b_{\mathbf{n}}^{p}}+\frac{1}{K} \sum_{\mathbf{n} \ll \mathbf{i}} \frac{E\left\|Z_{\mathbf{i}}^{\prime}\right\|}{b_{\mathbf{n}}}\right) \\
& \leq C \sup _{\mathbf{n} \succeq \mathbf{1}}\left(\frac{1}{K^{p}} \sum_{\mathbf{n} \ll \mathbf{i}} \frac{E\left\|Y_{\mathbf{i}}^{\prime}\right\|^{\mu_{\mathbf{n}}}}{b_{\mathbf{n}}^{\mu_{\mathbf{n}}}}+\frac{1}{K} \sum_{\mathbf{n} \ll \mathbf{i}} \frac{E\left\|Z_{\mathbf{i}}^{\prime}\right\|_{\mathbf{n}}^{\lambda_{\mathbf{n}}}}{b_{\mathbf{n}}^{\lambda_{\mathbf{n}}}}\right) \\
& \leq C \sup _{\mathbf{n} \succeq \mathbf{1}}\left(\frac{1}{K^{p}} \sum_{\mathbf{i} \gg \mathbf{n}} D_{\mathbf{i}} \cdot E \frac{\Phi_{\mathbf{i}}\left(\left\|Y_{\mathbf{i}}^{\prime}\right\|\right)}{\Phi_{\mathbf{i}}\left(b_{\mathbf{n}}\right)}+\frac{1}{K} \sum_{\mathbf{i} \gg \mathbf{n}} \frac{1}{C_{\mathbf{i}}} \cdot E \frac{\Phi_{\mathbf{i}}\left(\left\|Z_{\mathbf{i}}^{\prime}\right\|\right)}{\Phi_{\mathbf{i}}\left(b_{\mathbf{n}}\right)}\right) \\
& \leq C \sup _{\mathbf{n} \succeq \mathbf{1}} \frac{1}{\Phi_{\mathbf{n}}\left(b_{\mathbf{n}}\right)}\left(\frac{1}{K^{p}}+\frac{1}{K}\right) \sum_{\mathbf{i} \gg \mathbf{n}} A_{\mathbf{i}} E \Phi_{\mathbf{n}}\left(\left\|X_{\mathbf{i}}\right\|\right)<o(1) \quad \text { as } K \rightarrow \infty .
\end{aligned}
$$

(2) The proof that (3.8) implies (3.9) is the same as that in (1).

When $d=1$, by Remark 2.1, we have the following corollary.
Corollary 3.3.1. Let \mathbb{E} be a p-uniformly smooth Banach space for some $1 \leq$ $p \leq 2,\left\{X_{n}, \mathcal{F}_{n} ; n \in \mathbb{N}\right\}$ be a sequence of \mathbb{E}-valued martingale differences. Let $\left\{\Phi_{n} ; n \geq 1\right\}$ be a sequence of positive Borel functions which satisfies the following two conditions

$$
C_{n} \frac{u^{\lambda_{n}}}{v^{\lambda_{n}}} \leq \frac{\Phi_{n}(u)}{\Phi_{n}(v)} \leq D_{n} \frac{u^{\mu_{n}}}{v^{\mu_{n}}} \text { for all } u \geq v>0
$$

where $C_{n} \geq 1, D_{n} \geq 1, \lambda_{n} \geq 1,0<\mu_{n} \leq p$,

$$
\Phi_{n}(u) \leq \Phi_{m}(u) \text { for all } n>m
$$

Let $\left\{b_{n}\right\},\left\{B_{n}\right\}$ be sequences of positive constants, such that $\Phi_{n}\left(b_{n}\right)=o(1)$, $\Phi_{n}\left(B_{n}\right)=o(1)$.
(1) If

$$
\sum_{k \geq n+1} A_{k} E \Phi_{k}\left(\left\|X_{k}\right\|\right)=\mathcal{O}\left(\Phi_{n}\left(b_{n}\right)\right)
$$

then $\sum_{n \geq 1} X_{n}$ converges a.s. and

$$
\sup _{k \geq n+1}\left\|T_{k}\right\|=\mathcal{O}_{P}\left(b_{n}\right)
$$

where $T_{n}=\sum_{k \geq n+1} X_{k}$.
(2) If

$$
\sum_{k \geq n+1} A_{k} E \Phi_{k}\left(\left\|X_{k}\right\|\right)=o\left(\left(\Phi_{n}\left(B_{n}\right)\right)\right.
$$

then $\sum_{n \geq 1} X_{n}$ converges a.s. and

$$
\frac{\sup _{k \geq n+1}\left\|T_{k}\right\|}{B_{n}} \xrightarrow{P} 0
$$

where $T_{n}=\sum_{k \geq n+1} X_{k}$.
Remark 3.4. Let $\left\{X_{n}, \mathcal{F}_{n}, n \geq 1\right\}$ be a sequence of real-valued independent random variables with $E X_{n}=0, n \geq 1$. Let $\left\{g_{n}(x), n \geq 1\right\}$ be a sequence of functions defined on $[0, \infty)$ such that

$$
0 \leq g_{n}(0) \leq g_{n}(x), 0<g_{n}(x) \uparrow \infty \text { as } n \uparrow \infty \text { for each } x>0
$$

and

$$
\frac{g_{n}(x)}{x} \uparrow, \quad \frac{g_{n}(x)}{x^{p}} \downarrow \quad \text { on } \quad(0, \infty), \quad n \geq 1, \quad \text { for some } 1<p \leq 2
$$

In Corollary 3.3.1, taking $\Phi_{n}=g_{n}$ for all $n \geq 1$, with $\lambda_{n}=1, \mu_{n}=p, C_{n}=1$, $D_{n}=1, n \geq 1$, we obtain Theorem 2 in [11].

Finally, we establish the rate of complete convergence of the tail series of martingale difference fields.
Theorem 3.5. Let \mathbb{E} be a p-uniformly smooth Banach space for some $1 \leq p \leq$ 2, $\left\{X_{\mathbf{n}}, \mathcal{F}_{\mathbf{n}} ; \mathbf{n} \in \mathbb{N}^{d}\right\}$ be a field of \mathbb{E}-valued martingale differences. Let $\left\{a_{\mathbf{n}}\right\}$ be field of positive constants, such that either $a_{\mathbf{n}} \leq a_{\mathbf{m}}$ for all $\mathbf{n} \preceq \mathbf{m}$ or $a_{\mathbf{n}} \geq a_{\mathbf{m}}$ for all $\mathbf{n}<\mathbf{m}$ and $\sup _{n} a_{\mathbf{2}^{\mathbf{n}}} / a_{\mathbf{2}^{\mathbf{n}+1}} \leq M<\infty$. If

$$
\begin{equation*}
\sum_{\mathbf{n} \succeq \mathbf{1}} \varphi(\mathbf{n}) E\left\|X_{\mathbf{n}}\right\|^{p}<\infty \tag{3.10}
\end{equation*}
$$

where $\varphi(\mathbf{n})=\sum_{\mathbf{2}^{\mathbf{k}} \ll \mathbf{n}} \frac{1}{a_{\mathbf{2}^{\mathbf{k}}}}$, then for all $\varepsilon>0$,

$$
\begin{equation*}
\sum_{\mathbf{n} \succeq \mathbf{1}} \frac{1}{|\mathbf{n}|} P\left(\sup _{\mathbf{k} \succeq \mathbf{n}}\left\|T_{\mathbf{k}}\right\|>\varepsilon a_{\mathbf{n}}\right)<\infty \tag{3.11}
\end{equation*}
$$

Proof. For all $\mathbf{n} \succeq \mathbf{2}$ then $\varphi(\mathbf{n}) \geq \frac{1}{b_{\mathbf{2}}}>0$, so $\sum_{\mathbf{k} \gg \mathbf{n}} E\left\|X_{\mathbf{k}}\right\|^{p}=o(1)$ as $\|\mathbf{n}\| \rightarrow$ ∞. By proof of Theorem 3.1, we have $\sum_{\mathbf{n} \succeq \mathbf{1}} X_{\mathbf{n}}$ converges a.s. Thus, the tail series $\left\{T_{\mathbf{n}}=\sum_{\mathbf{k} \gg \mathbf{n}} X_{\mathbf{k}} ; \mathbf{n} \succeq \mathbf{1}\right\}$ is a well-defined field of random variables.

Next, to prove that (3.10) implies (3.11), we note that

$$
\sum_{\mathbf{n} \succeq \mathbf{1}} \frac{1}{|\mathbf{n}|} P\left(\sup _{\mathbf{k} \succeq \mathbf{n}}\left\|T_{\mathbf{k}}\right\|>\varepsilon a_{\mathbf{n}}\right)=\sum_{\mathbf{n} \succeq \mathbf{0}} \sum_{2^{\mathbf{i}} \preceq \mathbf{n} \preceq \mathbf{2}^{\mathbf{i}+1}} \frac{1}{|\mathbf{i}|} P\left(\sup _{\mathbf{k} \succeq \mathbf{i}}\left\|T_{\mathbf{k}}\right\|>\varepsilon a_{\mathbf{i}}\right)
$$

$$
\leq \sum_{\mathbf{n} \succeq \mathbf{0}} P\left(\sup _{\mathbf{k} \succeq \mathbf{2}^{\mathbf{n}}}\left\|T_{\mathbf{k}}\right\|>\frac{1}{M} \cdot \varepsilon a_{\mathbf{2}^{\mathrm{n}}}\right)
$$

Applying Lemma 2.3, Lemma 2.5, the Markov inequality and the same argument as the proof of Theorem 3.1, we see

$$
\begin{aligned}
\sum_{\mathbf{n} \succeq \mathbf{1}} \frac{1}{|\mathbf{n}|} P\left(\sup _{\mathbf{k} \succeq \mathbf{n}}\left\|T_{\mathbf{k}}\right\|>\varepsilon b_{\mathbf{n}}\right) & =\sum_{\mathbf{n} \succeq \mathbf{0}} \frac{M^{p}}{\varepsilon^{p} \cdot a_{\mathbf{2}^{\mathbf{n}}}^{p}} \sum_{\mathbf{i} \gg \mathbf{2}^{\mathbf{n}}} E\left\|X_{\mathbf{i}}\right\|^{p} \\
& \leq C \sum_{\mathbf{n} \succeq \mathbf{1}} \varphi(\mathbf{n})\left\|X_{\mathbf{n}}\right\|^{p}<\infty .
\end{aligned}
$$

Corollary 3.5.1. Let \mathbb{E} be a p-uniformly smooth Banach space for some $1 \leq$ $p \leq 2,\left\{X_{\mathbf{n}}, \mathcal{F}_{\mathbf{n}} ; \mathbf{n} \in \mathbb{N}^{d}\right\}$ be a field of \mathbb{E}-valued martingale differences. If

$$
\begin{equation*}
\sum_{\mathbf{n} \succeq \mathbf{1}} E\left\|X_{\mathbf{n}}\right\|^{p}<\infty \tag{3.12}
\end{equation*}
$$

then for all $\alpha>0, \varepsilon>0$,

$$
\begin{equation*}
\sum_{\mathbf{n} \succeq \mathbf{1}} \frac{1}{|\mathbf{n}|} P\left(\sup _{\mathbf{k} \geq \mathbf{n}}\left\|T_{\mathbf{k}}\right\|>\varepsilon|\mathbf{n}|^{\alpha}\right)<\infty . \tag{3.13}
\end{equation*}
$$

Proof. Put $a_{\mathbf{n}}=|\mathbf{n}|^{\alpha}$ then $\varphi(\mathbf{n}) \leq \sum_{\mathbf{n} \succeq \mathbf{1}} \frac{1}{\left|2^{\alpha \mathbf{n}}\right|}=\left(\sum_{n=1}^{\infty} \frac{1}{2^{\alpha n}}\right)^{d}<\infty$ so (3.12) implies (3.10). By Theorem 3.5 we get (3.13).

Corollary 3.5.2. Let \mathbb{E} be a p-uniformly smooth Banach space for some $1 \leq$ $p \leq 2,\left\{X_{n}, \mathcal{F}_{n} ; n \in \mathbb{N}\right\}$ be a sequence of \mathbb{E}-valued martingale differences. If

$$
\begin{equation*}
\sum_{n=1}^{\infty} E\left\|X_{n}\right\|^{p} \log _{2} n<\infty \tag{3.14}
\end{equation*}
$$

then for all $\alpha>0, \varepsilon>0$,

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n} P\left(\sup _{k \geq n}\left\|T_{k}\right\|>\varepsilon\right)<\infty \tag{3.15}
\end{equation*}
$$

Proof. Put $a_{n}=1$ then for $d=1$ we have $\varphi(n) \leq \log _{2} n$. Hence (3.14) implies (3.10). By Theorem 3.5 we obtain (3.15).

Acknowledgement. The authors would like to express our gratitude to the referee for his/her helpful comments and valuable suggestions which have significantly improved this paper.

This work was supported in part by National Foundation for Science and Technology Development (NAFOSTED)(grant no. 101.03-2013.02).

References

[1] Y. S. Chow and H. Teicher, Probability Theory: Independence, Interchangeability, Martingales, 2nd ed., Springer-Verlag, New York, 1988.
[2] J. I. Hong and J. Tsay, A strong law of large numbers for random elements in Banach spaces, Southeast Asian Bull. Math. 34 (2010), no. 2, 257-264.
[3] N. V. Huan and N. V. Quang, The Doob inequality and strong law of large numbers for multidimensional arrays in general Banach spaces, Kybernetika (Prague) 48 (2012), no. 2, 254-267.
[4] E. Nam and A. Rosalsky, On the rate of convergence of series of random variables, Teor. Ĭmovir. Mat. Stat. 52 (1995), 120-131 (in Ukrainian); English translation in: Theory Probab. Math. Statist. 52 (1996), 129-140.
[5] G. Pisier, Martingales with values in uniformly convex spaces, Israel J. Math. 20 (1975), no. 3-4, 326-350.
[6] , Probabilistic methods in the geometry of Banach spaces, In: Probability and analysis (Varenna, 1985), 167-241, Lecture Notes in Math., 1206, Springer, Berlin, 1986.
[7] A. Rosalsky and J. Rosenblatt, On the rate of convergence of series of Banach space valued random elements, Nonlinear Anal. 30 (1997), no. 7, 4237-4248.
[8] , On convergence of series of random variables with applications to martingale convergence and to convergence of series with orthogonal summands, Stoch. Anal. Appl. 16 (1998), no. 3, 553-566.
[9] A. Rosalsky and A. I. Volodin, On convergence of series of random elements via maximal moment relations with applications to martingale convergence and to convergence of series with p-orthogonal summands, Georgian Math. J. 8 (2001), no. 2, 377-388; Correction, Georgian Math. J. 10 (2003), no. 4, 799-802.
[10] F. S. Scalora, Abstract martingale convergence theorems, Pacific J. Math. 11 (1961), 347-374.
[11] S. H. Sung and A. I. Volodin, On convergence of series of independent random variables, Bull. Korean Math. Soc. 38 (2001), no. 4, 763-772.

TA Cong Son
Faculty of Mathematics
National University of Hanoi
334 Nguyen Trai, Hanoi, Vietnam
E-mail address: congson82@gmail.com
Dang Hung Thang
Faculty of Mathematics
National University of Hanoi
334 Nguyen Trai, Hanoi, Vietnam
E-mail address: hungthang.dang53.com

[^0]: Received November 28, 2014; Revised January 5, 2015.
 2010 Mathematics Subject Classification. 60B11, 60B12, 60F15, 60G42, 60G60.
 Key words and phrases. p-uniformly smooth Banach spaces, field of martingale differences, convergent of series of random field, tail series of random field.

