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COMPLETE CONVERGENCE FOR WEIGHTED SUMS
OF RANDOM ELEMENTS

Soo Hak Sung

Abstract. We obtain a result on complete convergence of weighted sums
for arrays of rowwise independent Banach space valued random elements.
No assumptions are given on the geometry of the underlying Banach
space. The result generalizes the main results of Ahmed et al. [1], Chen
et al. [2], and Volodin et al. [14].

1. Introduction

The concept of complete convergence of a sequence of random variables was
introduced by Hsu and Robbins [4] as follows. A sequence {Un, n ≥ 1} of
random variables converges completely to the constant θ if

∑∞
n=1 P (|Un− θ| >

ε) < ∞ for all ε > 0. By the Borel-Cantelli lemma, this implies that Un → θ
almost surely (a.s.). The converse is true if {Un, n ≥ 1} are independent random
variables. Hsu and Robbins [4] proved that the sequence of arithmetic means
of independent and identically distributed (i.i.d.) random variables converges
completely to the expected value if the variance of the summands is finite.

This result has been generalized and extended in several directions. Some
of these generalizations are in a Banach space setting, for example, see Ahmed
et al. [1], Hu et al. [5, 6], Kuczmaszewska and Szynal [7], Sung [10], Volodin
et al. [14], and Wang et al. [15]. A sequence of Banach space valued random
elements is said to converge completely to the 0 element of the Banach space
if the corresponding sequence of norms converges completely to 0.

Hu et al. [6] presented a general result establishing complete convergence for
the row sums of an array of rowwise independent but not necessarily identically
distributed Banach space valued random elements. Using this, Hu et al. [5]
obtained the following complete convergence result. Theorem 1.1 generalizes
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results of Hsu and Robbins [4], Kuczmaszewska and Szynal [7], Sung [10], and
Wang et al. [15].

Rowwise independence means that the random elements within each row are
independent but that no independence is assumed between rows.

In the following, we assume that {Xni, i ≥ 1, n ≥ 1} is an array of rowwise
independent random elements in a real separable Banach space and {ani, i ≥
1, n ≥ 1} is an array of real numbers.

Theorem 1.1 (Hu et al. [5]). Suppose that the array {Xni, i ≥ 1, n ≥ 1} is
stochastically dominated by a random variable X. That is,

P (||Xni|| > x) ≤ DP (|X| > x) for all x > 0 and for all i ≥ 1 and n ≥ 1,

where D is a positive constant. Assume that

(1.1) sup
i≥1

|ani| = O(n−γ) for some γ > 0

and ∞∑

i=1

|ani| = O(nµ) for some µ ∈ [0, γ).

If E|X|1+(1+µ+t)/γ < ∞ for some t ∈ (−1, γ − µ− 1] and
∑∞

i=1 aniXni → 0 in
probability, then

(1.2)
∞∑

n=1

ntP

(
||
∞∑

i=1

aniXni|| > ε

)
< ∞ for all ε > 0.

It is assumed in Theorem 1.1 that
∑∞

i=1 aniXni is finite a.s., since the a.s.
convergence is not automatic from the hypotheses. Ahmed et al. [1] established
the following more general result than Theorem 1.1.

Theorem 1.2 (Ahmed et al. [1]). Suppose that the array {Xni, i ≥ 1, n ≥ 1}
is stochastically dominated by a random variable X. Assume that (1.1) holds
and ∞∑

i=1

|ani| = O(nµ) for some µ < γ.

Let t be such that t + µ 6= −1 and fix δ > 1 such that 1 + µ/γ < δ ≤ 2. If
E|X|ν < ∞, where ν = max{1 + (1 + µ + t)/γ, δ}, and

∑∞
i=1 aniXni → 0 in

probability, then (1.2) holds.

Theorem 1.2 was slightly generalized by Volodin et al. [14] as follows. The-
orem 1.2 corresponds to the case θ = 1 in Theorem 1.3.

Theorem 1.3 (Volodin et al. [14]). Suppose that the array {Xni, i ≥ 1, n ≥ 1}
is stochastically dominated by a random variable X. Assume that (1.1) holds
and

∞∑

i=1

|ani|θ = O(nµ) for some 0 < θ ≤ 2 and µ such that θ + µ/γ < 2.
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Let t be such that t + µ 6= −1 and fix δ > θ such that θ + µ/γ < δ ≤ 2. If
E|X|ν < ∞, where ν = max{θ + (1 + µ + t)/γ, δ}, and

∑∞
i=1 aniXni → 0 in

probability, then (1.2) holds.

Note that (1.2) holds clearly if t < −1. Hence it is of interest only for
t ≥ −1. In particular, the case t = −1 is of interest. Ahmed et al. [1] con-
jectured that when t = −1, the assumption E|X|ν < ∞ can be replaced by
E|X|1+µ/γ logρ(|X|) < ∞ (ρ > 0) in Theorem 1.2. Sung and Volodin [13] gave
a positive answer as follows:

Theorem 1.4 (Sung and Volodin [13]). Suppose that the array {Xni, i ≥ 1, n ≥
1} is stochastically dominated by a random variable X. Assume that (1.1) holds
and

(1.3)
∞∑

i=1

|ani|θ = O(nµ) for some µ > 0 and θ > 0 such that θ + µ/γ < 2.

If E|X|θ+µ/γ logρ(|X|) < ∞ for some ρ > 0 and
∑∞

i=1 aniXni → 0 in probabil-
ity, then

(1.4)
∞∑

n=1

1
n

P

(
||
∞∑

i=1

aniXni|| > ε

)
< ∞ for all ε > 0.

Chen et al. [2] improved Theorem 1.4 by proving that the condition

E|X|θ+µ/γ logρ(|X|) < ∞
can be replaced by the weaker condition E|X|θ+µ/γ < ∞.

Theorem 1.5 (Chen et al. [2]). Suppose that the array {Xni, i ≥ 1, n ≥ 1} is
stochastically dominated by a random variable X. Assume that (1.1) and (1.3)
hold. If E|X|θ+µ/γ < ∞ and

∑∞
i=1 aniXni → 0 in probability, then (1.4) holds.

In this paper, we obtain a new complete convergence result which generalizes
the above all results. No assumptions are made concerning the geometry of the
underlying Banach space.

The plan of the paper is as follows. In Section 2, we recall well known
inequalities and give some elementary results pertaining to the current work.
The main result is given in Section 3.

The symbol C denotes a positive constant which is not necessarily the same
one in each appearance.

2. Preliminaries

In this section, we present some inequalities and elementary results which
will be useful in the proof of our main result.

Let B be a real separable Banach space with norm || · ||. Let (Ω,F , P ) be a
probability space. A random element (or B-valued random element) is defined
to be a F-measurable mapping from Ω to B equipped with the Borel σ-algebra
(the σ-algebra generated by the open sets determined by || · ||).
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The first two lemmas are well known and their proofs are standard.

Lemma 2.1. Let {Xn, n ≥ 1} be a sequence of random variables which are
stochastically dominated by a random variable X. Then for any r > 0 and
b > 0, the following statements hold:

(i) E|Xn|rI(|Xn| ≤ b) ≤ D{E|X|rI(|X| ≤ b) + brP (|X| > b)}.
(ii) E|Xn|rI(|Xn| > b) ≤ DE|X|rI(|X| > b).

Lemma 2.2. Let X be a random variable with E|X|r < ∞ for some r > 0.
Then for any p > 0, the following statements hold:

(i)
∑∞

n=1(1/n1+δ/p)E|X|r+δI(|X| ≤ n1/p) ≤ CE|X|r for any δ > 0.

(ii)
∑∞

n=1(1/n1−δ/p)E|X|r−δI(|X| > n1/p) ≤ CE|X|r for any δ > 0 such
that r − δ > 0.

(iii)
∑∞

n=1(1/n1−r/p)P (|X| > n1/p) ≤ CE|X|r.
Lemma 2.3. Let X and Y be random variables with the same distribution.
Then for any r > 0 and b > 0, the following statements hold:

(i) E|X − Y |rI(|X − Y | ≤ b) ≤ max{2, 22r−1}(E|X|rI(|X| ≤ b) +
brP (|X| > b)

)
.

(ii) E|X − Y |rI(|X − Y | > b) ≤ 2r+1E|X|rI(|X| > b/2).

Proof. (i) Observe that

|X−Y |I(|X−Y |≤ b)≤|X|I(|X| ≤ b)+bI(|X| > b)+|Y |I(|Y | ≤ b)+bI(|Y | > b).

If 0 < r ≤ 1, then we have by the cr-inequality that

E|X − Y |rI(|X − Y | ≤ b)

≤ E(|X|rI(|X| ≤ b) + brI(|X| > b) + |Y |rI(|Y | ≤ b) + brI(|Y | > b))

= 2
(
E|X|rI(|X| ≤ b) + brP (|X| > b)

)
.

If r > 1, then we have by the Hölder inequality that

E|X − Y |rI(|X − Y | ≤ b)

≤ 4r−1E
(|X|rI(|X| ≤ b) + brI(|X| > b) + |Y |rI(|Y | ≤ b) + brI(|Y | > b)

)

= 22r−1
(
E|X|rI(|X| ≤ b) + brP (|X| > b)

)
.

(ii) Since E|X| = ∫∞
0

P (|X| > x) dx, it follows that

E|X − Y |rI(|X − Y | > b)

= brP (|X − Y | > b) +
∫ ∞

br

P (|X − Y |r > x) dx

≤ br
(
P (|X| > b/2) + P (|Y | > b/2)

)

+
∫ ∞

br

P (|X| > x1/r/2) + P (|Y | > x1/r/2) dx

= 2r+1E|X|rI(|X| > b/2). ¤
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Combining Lemma 2.1 and Lemma 2.3 gives the following:

Lemma 2.4. Let {Xn, n ≥ 1} be a sequence of random variables which are
stochastically dominated by a random variable X. Assume that Xn and Yn

have the same distribution. Then for any r > 0 and b > 0, the followings hold:
(i) E|Xn − Yn|rI(|Xn − Yn| ≤ b) ≤ D max{2, 22r−1}(E|X|rI(|X| ≤ b) +

2brP (|X| > b)
)
.

(ii) E|Xn − Yn|rI(|Xn − Yn| > b) ≤ D2r+1E|X|rI(|X| > b/2).

Note that Lemmas 2.1-2.4 are still valid for random elements.

The following lemma gives us a useful contraction principle and can be found
in Lemma 6.5 of Ledoux and Talagrand [9].

Lemma 2.5. Let {Xi, i ≥ 1} be a sequence of symmetric random elements.
Let further {ξi, i ≥ 1} and {ζi, i ≥ 1} be real random variables such that ξi =
φi(Xi), where φi : B → R is symmetric (even), and similarly for ζi. Then, if
|ξi| ≤ |ζi| almost surely for every i, for every t > 0

P

(
||

∑

i

ξiXi|| > t

)
≤ 2P

(
||

∑

i

ζiXi|| > t

)
.

In particular, this inequality applies when ξi = I{Xi∈Ai} ≤ 1 ≡ ζi, where the
sets Ai are symmetric in B (in particular Ai = {||x|| ≤ ai}).

The next lemma is a modification of a result of Kuelbs and Zinn [8] concern-
ing the relationship between convergence in probability and mean convergence
for sums of independent bounded random variables. We refer to Lemma 2.1 of
Hu et al. [6] for the proof.

Lemma 2.6. Let {Xni, i ≥ 1, n ≥ 1} be an array of rowwise independent
symmetric random elements. Suppose there exists δ > 0 such that ||Xni|| ≤ δ
almost surely for all i ≥ 1 and n ≥ 1. Put Sn =

∑∞
i=1 Xni. If Sn → 0 in

probability, then E||Sn|| → 0 as n →∞.

The following inequalities are Banach space analogues of the classical Marc-
inkiewicz-Zygmund and Rosenthal inequalities and are due to de Acosta [3].

Lemma 2.7. Let {Xi, 1 ≤ i ≤ n} be a sequence of independent random el-
ements. Then there exists a positive constant Cp depending only on p such
that

(i) for 1 ≤ p ≤ 2,

E
∣∣||

n∑

i=1

Xi|| − E||
n∑

i=1

Xi||
∣∣p ≤ Cp

n∑

i=1

E||Xi||p,

(ii) for p > 2,

E
∣∣||

n∑

i=1

Xi|| − E||
n∑

i=1

Xi||
∣∣p ≤ Cp

{( n∑

i=1

E||Xi||2
)p/2

+
n∑

i=1

E||Xi||p
}

.
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3. Main results

Throughout this section, let {Xni, i ≥ 1, n ≥ 1} be an array of rowwise
independent random elements which are stochastically dominated by a random
X satisfying E|X|p(t+β+1) < ∞ for some p > 0, t ≥ −1, β ∈ R such that
p(t + β + 1) ≥ 1.

Let {ani, i ≥ 1, n ≥ 1} be a bounded array of real numbers such that

(3.1)
∞∑

i=1

|ani|q = O(nβ) for some q < p(t + β + 1).

Note that (3.1) implies
∞∑

i=1

|ani|q+γ = O(nβ) for any γ > 0,

since |ani| = O(1).

We now state our main results. For the case p(t + β + 1) > 1, it is assumed
that the series

∑∞
i=1 aniXni converges a.s..

Theorem 3.1. Suppose that (3.1) holds and

(3.2)
∞∑

i=1

aniXni

n1/p
→ 0 in probability.

Furthermore, assume that

(3.3)
∞∑

i=1

a2
ni = O(nα) for some α <

2
p

if p(t + β + 1) ≥ 2. Then

(3.4)
∞∑

n=1

ntP

(
||
∞∑

i=1

aniXni|| > n1/pε

)
< ∞ for all ε > 0.

Remark 3.1. (i) If t < −1, then (3.4) is immediate.
(ii) When p(t + β + 1) = 1, the series

∑∞
i=1 aniXni converges a.s., since

∞∑

i=1

E||aniXni|| ≤ DE|X|max
i,n

|ani|1−q
∞∑

i=1

|ani|q ≤ Cnβ < ∞.

(iii) Sung [11] proved Theorem 3.1 for the random variable case. When
0 < p(t + β + 1) < 1, Theorem 3.1 is still valid without the independence
condition and the weak law of large numbers condition (see Theorem 2(i) of
Sung [11]).

To prove our main results, we need the following lemmas.
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Lemma 3.1. Let {Xs
ni, i ≥ 1, n ≥ 1} be an array of the symmetrized version of

{Xni}, i.e., Xs
ni = Xni−X∗

ni, where Xni and X∗
ni are independent and have the

same distribution. If the bounded array {ani} satisfies (3.1), then the following
statements hold:

(i)

∞∑
n=1

nt
∞∑

i=1

E||n−1/paniX
s
niI(||Xs

ni|| ≤ n1/p)||p(t+β+1)+δ ≤ CE|X|p(t+β+1)

for any δ > 0.
(ii)

∞∑
n=1

nt
∞∑

i=1

E||n−1/paniX
s
niI(||Xs

ni|| > n1/p)||p(t+β+1)−δ ≤ CE|X|p(t+β+1)

for any δ > 0 such that p(t + β + 1)− δ ≥ q and p(t + β + 1)− δ > 0.

Proof. By Lemmas 2.1-2.3, we get that

∞∑
n=1

nt
∞∑

i=1

E||n−1/paniX
s
niI(||Xs

ni|| ≤ n1/p)||p(t+β+1)+δ

≤ C

∞∑
n=1

1
nβ+1+δ/p

∞∑

i=1

|ani|p(t+β+1)+δ
{
E||XniI(||Xni|| ≤ n1/p)||p(t+β+1)+δ

+ nt+β+1+δ/pP (||Xni|| > n1/p)
}

≤ C

∞∑
n=1

1
nβ+1+δ/p

∞∑

i=1

|ani|p(t+β+1)+δ
{
E|XI(|X| ≤ n1/p)|p(t+β+1)+δ

+ nt+β+1+δ/pP (|X| > n1/p)
}

≤ C

∞∑
n=1

1
n1+δ/p

E|XI(|X| ≤ n1/p)|p(t+β+1)+δ + C

∞∑
n=1

nt+βP (|X| > n1/p)

≤ CE|X|p(t+β+1) < ∞.

Thus (i) is proved. The proof of (ii) is similar to that of (i) and is omitted. ¤

Lemma 3.2. Let {Xs
ni = Xni − X∗

ni, i ≥ 1, n ≥ 1} be an array of the sym-
metrized version of {Xni}. If

∑∞
i=1 aniXni/n1/p → 0 in probability, then the

following statements hold:

(i)
∑∞

i=1 aniX
s
niI(||Xs

ni|| ≤ n1/p)/n1/p → 0 in probability.
(ii)

∑∞
i=1 aniX

s
niI(||Xs

ni|| > n1/p)/n1/p → 0 in probability.
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Proof. Applying Lemma 2.5, we have that

P

(
||
∞∑

i=1

aniX
s
niI(||Xs

ni|| ≤ n1/p)|| > n1/pε

)

≤ 2P

(
||
∞∑

i=1

aniX
s
ni|| > n1/pε

)

≤ 2

{
P

(
||
∞∑

i=1

aniXni|| > n1/pε/2

)
+ P

(
||
∞∑

i=1

aniX
∗
ni|| > n1/pε/2

)}

= 4P

(
||
∞∑

i=1

aniXni|| > n1/pε/2

)
→ 0

as n →∞. Thus (i) is proved. The proof of (ii) is similar to that of (i) and is
omitted. ¤

Lemma 3.2 can be strengthen by imposing some additional conditions.

Lemma 3.3. Let {Xs
ni = Xni − X∗

ni, i ≥ 1, n ≥ 1} be an array of the sym-
metrized version of {Xni}. Let {ani, i ≥ 1, n ≥ 1} be a bounded array of real
numbers satisfying (3.1). Assume that

∑∞
i=1 aniXni/n1/p → 0 in probability.

Furthermore, suppose that (3.3) holds if p(t + β + 1) ≥ 2. Then the following
statements hold:

(i) E||∑∞
i=1 aniX

s
niI(||Xs

ni|| ≤ n1/p)||/n1/p → 0 as n →∞.

(ii) E||∑∞
i=1 aniX

s
niI(||Xs

ni|| > n1/p)||/n1/p → 0 as n →∞.

Proof. (i) By Lemma 3.2,
∑∞

i=1 aniX
s
niI(||Xs

ni|| ≤ n1/p)/n1/p → 0 in probabil-
ity. Since |ani| = O(1), we have that ||aniX

s
niI(||Xs

ni|| ≤ n1/p)||/n1/p = O(1).
Thus (i) follows by Lemma 2.6.

(ii) We proceed with three cases. First we consider the case of q < 1. We
get by Lemma 2.4 that

E||
∞∑

i=1

aniX
s
niI(||Xs

ni|| > n1/p)||/n1/p

≤ C

∞∑

i=1

|ani|E|X|I(|X| > n1/p/2)/n1/p

≤ Cnβ−1/pE|X|I(|X| > n1/p/2)

≤ Cn−t−1E|X|p(t+β+1)I(|X| > n1/p/2) → 0

as n →∞, since t + 1 ≥ 0 and E|X|p(t+β+1)I(|X| > n1/p/2) → 0 as n →∞.
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Next we consider the case of 1 ≤ q ≤ 2. Using Lemma 2.4 and Lemma 2.7,
we get that

E

∣∣∣∣||
∞∑

i=1

aniX
s
niI(||Xs

ni|| > n1/p)||/n1/p − E||
∞∑

i=1

aniX
s
niI(||Xs

ni|| > n1/p)||/n1/p

∣∣∣∣
q

≤ Cqn
−q/p

∞∑

i=1

|ani|qE||Xs
ni||qI(||Xs

ni|| > n1/p)

≤ Cnβ−q/pE|X|qI(|X| > n1/p/2)

≤ Cn−t−1E|X|p(t+β+1)I(|X| > n1/p/2) → 0

as n →∞. It follows that

||
∞∑

i=1

aniX
s
niI(||Xs

ni|| > n1/p)||/n1/p − E||
∞∑

i=1

aniX
s
niI(||Xs

ni|| > n1/p)||/n1/p → 0

in probability. On the other hand, ||∑∞
i=1 aniX

s
niI(||Xs

ni|| > n1/p)||/n1/p → 0
in probability by Lemma 3.2. So E||∑∞

i=1 aniX
s
niI(||Xs

ni|| > n1/p)||/n1/p → 0
as n →∞.

Finally we consider the case of q > 2. Using Lemma 2.4, Lemma 2.7, and
(3.3), we get that

E

∣∣∣∣||
∞∑

i=1

aniX
s
niI(||Xs

ni|| > n1/p)||/n1/p−E||
∞∑

i=1

aniX
s
niI(||Xs

ni|| > n1/p)||/n1/p

∣∣∣∣
q

≤ Cqn
−q/p

{( ∞∑

i=1

a2
niE||Xs

ni||2I(||Xs
ni|| > n1/p)

)q/2

+
∞∑

i=1

|ani|qE||Xs
ni||qI(||Xs

ni|| > n1/p)
}

≤ Cn−q/p

{( ∞∑

i=1

a2
niE|X|2I(|X| > n1/p/2)

)q/2

+
∞∑

i=1

|ani|qE|X|qI(|X| > n1/p/2)
}

≤ Cn−q/p

{(
nαE|X|2I(|X| > n1/p/2)

)q/2

+ nβE|X|qI(|X| > n1/p/2)
}

≤ C

{
nq(α−(t+β+1))/2

(
E|X|p(t+β+1)I(|X| > n1/p/2)

)q/2

+ n−t−1E|X|p(t+β+1)I(|X| > n1/p/2)
}

=: An + Bn.

Since 2 < q < p(t+β +1) and α < 2/p, q(α− (t+β +1))/2 < 0 and so An → 0
as n → ∞. Since t + 1 ≥ 0 and E|X|p(t+β+1)I(|X| > n1/p/2) → 0, Bn → 0
as n → ∞. The rest of the proof is same as that of the case 1 ≤ q ≤ 2 and is
omitted. ¤

Finally, we need the following lemma which is due to Sung et al. [12].

Lemma 3.4 (Sung et al. [12]). Let {Xni, i ≥ 1, n ≥ 1} be an array of row-
wise independent random elements. Let {cn, n ≥ 1} be a sequence of positive
numbers. Suppose that for every ε > 0 and some δ > 0,

(i)
∑∞

n=1 cn

∑∞
i=1 P (||Xni|| > ε) < ∞,
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(ii) there exists J ≥ 2 such that

∞∑
n=1

cn

( ∞∑

i=1

E||Xni||2I(||Xni|| ≤ δ)
)J

< ∞,

(iii)
∑∞

i=1 Xni → 0 in probability.

Then
∑∞

n=1 cnP (||∑∞
i=1 Xni|| > ε) < ∞ for all ε > 0.

With the preliminary lemmas, we prove our main result.

Proof of Theorem 3.1. Let {Xs
ni = Xni −X∗

ni, i ≥ 1, n ≥ 1} be an array of the
symmetrized version of {Xni}. Put µn be a median of ||∑∞

i=1 aniXni||/n1/p.

Since ||∑∞
i=1 aniXni||/n1/p → 0 in probability, µn → 0 as n → ∞. Then we

have by the weak symmetrization inequality that for all large n

P

( ||∑∞
i=1 aniXni||

n1/p
> ε

)
≤ P

( ||∑∞
i=1 aniXni||

n1/p
− µn >

ε

2

)

≤ 2P

( ||∑∞
i=1 aniX

s
ni||

n1/p
>

ε

2

)

≤ 2P

( ||∑∞
i=1 aniX

s
niI(||Xs

ni|| ≤ n1/p)||
n1/p

>
ε

4

)

+ 2P

( ||∑∞
i=1 aniX

s
niI(||Xs

ni|| > n1/p)||
n1/p

>
ε

4

)
.

Hence it is enough to show that

(3.5)
∞∑

n=1

ntP

(
||
∞∑

i=1

aniX
s
niI(||Xs

ni|| ≤ n1/p)|| > n1/pε/4

)
< ∞

and

(3.6)
∞∑

n=1

ntP

(
||
∞∑

i=1

aniX
s
niI(||Xs

ni|| > n1/p)|| > n1/pε/4

)
< ∞.

We proceed with three cases.

Case 1: 1 < p(t + β + 1) < 2.
By Lemma 3.3, there exists a positive integer N such that

E||
∞∑

i=1

aniX
s
niI(||Xs

ni|| ≤ n1/p)|| < n1/pε/8 if n ≥ N.
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Taking δ > 0 such that p(t + β + 1) + δ ≤ 2, we get by Markov’s inequality,
Lemma 2.7, and Lemma 3.1 that

∞∑

n=N

ntP

( ||∑∞
i=1 aniX

s
niI(||Xs

ni|| ≤ n1/p)||
n1/p

>
ε

4

)(3.7)

≤
∞∑

n=N

ntP

(∣∣∣∣
||∑∞

i=1 aniX
s
niI(||Xs

ni|| ≤ n1/p)||
n1/p

− E||∑∞
i=1 aniX

s
niI(||Xs

ni|| ≤ n1/p)||
n1/p

∣∣∣∣ >
ε

8

)

≤ C
∞∑

n=N

ntE

∣∣∣∣∣||
∞∑

i=1

n−1/paniX
s
niI(||Xs

ni|| ≤ n1/p)|| − E||
∞∑

i=1

n−1/paniX
s
niI(||Xs

ni|| ≤ n1/p)||
∣∣∣∣∣

p(t+β+1)+δ

≤ C
∞∑

n=N

nt
∞∑

i=1

E||n−1/paniX
s
niI(||Xs

ni|| ≤ n1/p)||p(t+β+1)+δ

≤ CE|X|p(t+β+1) < ∞.

Hence (3.5) holds when 1 < p(t + β + 1) < 2.
By Lemma 3.3, there exists a positive integer M such that

E||
∞∑

i=1

aniX
s
niI(||Xs

ni|| > n1/p)|| < n1/pε/8 if n ≥ M.

Taking δ > 0 such that p(t + β + 1) − δ ≥ max{1, q}, we get by Markov’s
inequality, Lemma 2.7, and Lemma 3.1 that

∞∑

n=M

ntP

( ||∑∞
i=1 aniX

s
niI(||Xs

ni|| > n1/p)||
n1/p

>
ε

4

)(3.8)

≤
∞∑

n=M

ntP

(∣∣∣∣
||∑∞

i=1 aniX
s
niI(||Xs

ni|| > n1/p)||
n1/p

− E||∑∞
i=1 aniX

s
niI(||Xs

ni|| > n1/p)||
n1/p

∣∣∣∣ >
ε

8

)

≤ C

∞∑

n=M

ntE

∣∣∣∣∣||
∞∑

i=1

n−1/paniX
s
niI(||Xs

ni|| > n1/p)|| − E||
∞∑

i=1

n−1/paniX
s
niI(||Xs

ni|| > n1/p)||
∣∣∣∣∣

p(t+β+1)−δ

≤ C

∞∑

n=M

nt
∞∑

i=1

E||n−1/paniX
s
niI(||Xs

ni|| > n1/p)||p(t+β+1)−δ

≤ CE|X|p(t+β+1) < ∞.

Hence (3.6) holds when 1 < p(t + β + 1) < 2.

Case 2: p(t + β + 1) = 1.
By the proof of (3.7), (3.5) holds when p(t + β + 1) = 1. To prove (3.6),

take δ > 0 such that p(t + β + 1)− δ > max{0, q}. Then we have by Markov’s
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inequality and Lemma 3.1 that

∞∑
n=1

ntP

(
||
∞∑

i=1

aniX
s
niI(||Xs

ni|| > n1/p)|| > n1/pε/4

)

≤ C

∞∑
n=1

ntE||
∞∑

i=1

n−1/paniX
s
niI(||Xs

ni|| > n1/p)||p(t+β+1)−δ

≤ C

∞∑
n=1

nt
∞∑

i=1

E||n−1/paniX
s
niI(||Xs

ni|| > n1/p)||p(t+β+1)−δ

≤ CE|X|p(t+β+1) < ∞.

Hence (3.6) holds when p(t + β + 1) = 1.

Case 3: p(t + β + 1) ≥ 2.
We apply Lemma 3.4 to the random element n−1/paniX

s
niI(||Xs

ni|| ≤ n1/p).
Taking δ > 0, we have by Lemma 3.1 that

∞∑
n=1

nt
∞∑

i=1

P
(
||n−1/paniX

s
niI(||Xs

ni|| ≤ n1/p)|| > ε
)

≤ C

∞∑
n=1

nt
∞∑

i=1

E||n−1/paniX
s
niI(||Xs

ni|| ≤ n1/p)||p(t+β+1)+δ

≤ CE|X|p(t+β+1) < ∞.

Since 2/p > α, we can take J ≥ 2 such that J(2/p−α)− t > 1. It follows that

∞∑
n=1

nt

( ∞∑

i=1

E||n−1/paniX
s
niI(||Xs

ni|| ≤ n1/p)||2I(||n−1/paniX
s
niI(||Xs

ni|| ≤ n1/p)|| ≤ 1)

)J

≤
∞∑

n=1

nt

(
n−2/p

∞∑

i=1

a2
niE||Xs

ni||2
)J

≤ C
∞∑

n=1

nt
(
nα−2/pE|X|2

)J

< ∞.

By Lemma 3.2,
∑∞

i=1 aniX
s
niI(||Xs

ni|| ≤ n1/p)/n1/p → 0 in probability. Thus all
conditions of Lemma 3.4 are satisfied. Hence (3.5) holds when p(t+β +1) ≥ 2.
Similarly, (3.6) holds when p(t + β + 1) ≥ 2. ¤

Now we prove Theorems 1.1-1.5 by using our main result (Theorem 3.1).
Since Theorem 1.1 and Theorem 1.2 follow by Theorem 1.3, and Theorem 1.4
follows by Theorem 1.5, we will prove only Theorem 1.3 and Theorem 1.5.
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Proof of Theorem 1.3. We will apply Theorem 3.1 with p = 1/γ and ani re-
placed by nγani. Then we have that

|nγani| = O(1) and
∞∑

i=1

|nγani|θ = O(nθγ+µ).

When 1 + µ + t > 0, take q = θ and β = θγ + µ. Then p(t + β + 1) =
1
γ (t+(θγ +µ)+1) = θ +(1+µ+ t)/γ and so q < p(t+β +1) ≤ ν. Hence (3.1)
with ani replaced by nγani holds.
When 1 + µ + t < 0, take q = θ and β = θγ + µ + γ(δ − (θ + (1 + µ + t)/γ)).
Since δ > θ, β > θγ + µ and p(t + β + 1) = δ, and so q < p(t + β + 1) ≤ ν.
Hence (3.1) with ani replaced by nγani holds.
Furthermore,

∞∑

i=1

|nγani|2 = n2γ
∞∑

i=1

a2
ni ≤ n2γ sup

i,n
|ani|2−θ

∞∑

i=1

|ani|θ ≤ Cnθγ+µ.

Since θ + µ/γ < 2, θγ + µ < 2/p and so (3.3) with ani replaced by nγani holds
for α = θγ + µ. Thus the result follows by Theorem 3.1. ¤

Proof of Theorem 1.5. We will apply Theorem 3.1 with t = −1, p = 1/γ, q =
θ, α = θγ + µ, β = θγ + µ, and ani replaced by nγani. Since θ + µ/γ < 2 and
µ > 0, p(t+β +1) = θ+µ/γ > q and α < 2/p. From the proof of Theorem 1.3,
we have that

|nγani| = O(1),
∞∑

i=1

|nγani|θ = O(nθγ+µ), and
∞∑

i=1

|nγani|2 = O(nθγ+µ).

Thus the result follows by Theorem 3.1. ¤

Finally, we give an example showing that our result is more general than
Theorems 1.1-1.5.

Example 3.1. Let {Xni, i ≥ 1, n ≥ 1} be an array of rowwise independent
random elements which are stochastically dominated by a random variable X
satisfying E|X|3 < ∞. If

∑n
i=1 Xni/(n

√
i) → 0 in probability, then

(3.9)
∞∑

n=1

n2P

(
||

n∑

i=1

Xni/
√

i|| > nε

)
< ∞ for all ε > 0.

To prove (3.9), let t = 2, p = 1, and

ani =

{
1/
√

i, 1 ≤ i ≤ n and n ≥ 1,

0, otherwise.

Observe that
∞∑

i=1

|ani|q =
n∑

i=1

(1/
√

i)q = O(1) if q > 2



382 SOO HAK SUNG

and
∞∑

i=1

a2
ni =

n∑

i=1

1
i

= O(log n).

If we take β = 0, 2 < q < 3, and 0 < α < 2, then q < p(t + β + 1) = 3 and
α < 2/p, and so (3.1) and (3.3) hold. Thus (3.9) holds by Theorem 3.1.

We next show that (3.9) can not be proved by using Theorem 1.3 or The-
orem 1.5 (Note that Theorem 1.3 is stronger than Theorems 1.1 and 1.2, and
Theorem 1.5 is stronger than Theorem 1.4). Since t = 2, we can not apply
Theorem 1.5.

We now apply Theorem 1.3 to prove (3.9). Since | 1
n
√

i
| = O(n−1), γ ≤ 1.

Noting that
n∑

i=1

1
(n
√

i)θ
=

{
n1−3θ/2 if 0 < θ < 2,

n−2 log n if θ = 2,

we have that µ ≥ 1− 3θ/2 if 0 < θ < 2 and µ > −2 if θ = 2. If 0 < θ < 2, then
θ+(1+µ+t)/γ ≥ θ+µ+3 ≥ 4−θ/2 > 3. If θ = 2, then θ+(1+µ+t)/γ ≥ 5+µ >
3. In both cases, θ + (1 + µ + t)/γ > 3. Thus we can not apply Theorem 1.3.

Acknowledgements. The author would like to thank the referee for helpful
comments.

References

[1] S. E. Ahmed, R. Giuliano Antonini, and A. Volodin, On the rate of complete convergence
for weighted sums of arrays of Banach space valued random elements with application
to moving average processes, Statist. Probab. Lett. 58 (2002), no. 2, 185–194.

[2] P. Chen, S. H. Sung, and A. I. Volodin, Rate of complete convergence for arrays of
Banach space valued random elements, Siberian Adv. Math. 16 (2006), no. 3, 1–14.

[3] A. de Acosta, Inequalities for B-valued random vectors with applications to the strong
law of large numbers, Ann. Probab. 9 (1981), no. 1, 157–161.

[4] P. L. Hsu and H. Robbins, Complete convergence and the law of large numbers, Proc.
Nat. Acad. Sci. U. S. A. 33 (1947), 25–31.

[5] T.-C. Hu, D. Li, A. Rosalsky, and A. Volodin, On the rate of complete convergence for
weighted sums of arrays of Banach space valued random elements, Teor. Veroyatnost.
i Primenen. 47 (2002), no. 3, 533–547; translation in Theory Probab. Appl. 47 (2003),
no. 3, 455–468.

[6] T.-C. Hu, A. Rosalsky, D. Szynal, and A. Volodin, On complete convergence for arrays
of rowwise independent random elements in Banach spaces, Stochastic Anal. Appl. 17
(1999), no. 6, 963–992.

[7] A. Kuczmaszewska and D. Szynal, On complete convergence in a Banach space, Internat.
J. Math. Math. Sci. 17 (1994), no. 1, 1–14.

[8] J. Kuelbs and J. Zinn, Some stability results for vector valued random variables, Ann.
Probab. 7 (1979), no. 1, 75–84.

[9] M. Ledoux and M. Talagrand, Probability in Banach Spaces, Springer-Verlag, 1991.
[10] S. H. Sung, Complete convergence for weighted sums of arrays of rowwise independent

B-valued random variables, Stochastic Anal. Appl. 15 (1997), no. 2, 255–267.
[11] , Complete convergence for weighted sums of random variables, Statist. Probab.

Lett. 77 (2007), no. 3, 303–311.



COMPLETE CONVERGENCE FOR WEIGHTED SUMS OF RANDOM ELEMENTS 383
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