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ON THE WEAK LAWS WITH RANDOM
INDICES FOR PARTIAL SUMS FOR
ARRAYS OF RANDOM ELEMENTS IN
MARTINGALE TYPE p BANACH SPACES

Soo0 HAk SuNG, TiEN-CHUNG Hu, AND ANDREI I. VOLODIN

ABSTRACT. Sung et al. [13] obtained a WLLN (weak law of large
numbers) for the array {Xni,un <@ < vn,n > 1} of random vari-
ables under a Cesaro type condition, where {u, > —oo,n > 1} and
{vn € +00,n > 1} are two sequences of integers. In this paper, we
extend the result of Sung et al. [13] to a martingale type p Banach
space.

1. Introduction

The classical weak law of large numbers (WLLN) says that if { X,,,n >
1} is a sequence of independent and identically distributed (i.i.d.) ran-
dom variables satisfying nP(|X1| > n) = o(1), then Y ;" ,(X; — EXq[
(|IX1] £ n))/n — 0 in probability as n — oco. The WLLN has been
extended to the arrays of random variables or random elements (for
random variables, see Hong and Lee [5], Hong and Oh [6], and Sung
[12], and for random elements, see Adler et al. [1], Ahmed et al. [2],
and Hong et al. [7]).

Recently, Sung et al. [13] obtained a WLLN for the array {Xp;, un <
i < vp,n > 1} of a random variables under a Cesaro type condition,
where {u, > —oco,n > 1} and {v, < +oo,n > 1} are two sequences of
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integers. In this paper, we extend the result of Sung et al. [13] to a
martingale type p Banach space.

2. Preliminary definitions

Technical definitions relevant to the current work will be discussed in
this section. Scalora [11] introduced the idea of the conditional expec-
tation of a random element in a Banach space. For a random element
V and sub o-algebra G of F, the conditional expectation E(V|G) is de-
fined analogously to that in the random variable case and enjoys similar
properties. See Scalora [11] for a complete development, as well as for a
development of Banach space valued martingales including martingale
convergence theorems.

A real separable Banach space X is said to be of martingale type p
(1 < p < 2) if there exists a finite constant C such that for all martingales
{Sn,n > 1} with values in X,

o0
sup E|| S, < CZ E|Sn — Sn|lP,
nz1 n=1
where Sy = 0. It can be shown using classical methods from martingale
theory that if X' is of martingale type p, then for all 1 < r < oo there
exists a finite constant C” such that for all X-valued martingales {S,,n >

}
ESllp an < (;/E Srn - S»n__ / .

n=1

Clearly every real separable Banach space is of martingale type 1 and
the real line (the same as any Hilbert space) is of martingale type 2. It
follows from the Hoffmann-J¢rgensen and Pisier [4] characterization of
Rademacher type p Banach spaces that if a Banach space is of martingale
type p, then it is of Rademacher type p. But the notion of martingale
type p is only superficially similar to that of Rademacher type p and has
a geometric characterization in terms of smoothness. For proofs and
more details, the reader may refer to Pisier [9, 10].

We say that a sequence {Xy,n > 1} of random elements is uniformly
bounded by a random variable X if there exists a constant C > 0 such
that for all n > 1 and all £ > 0:

P(||X.|| > t) < CP(IX| > Ct).

Without loss of generality we assume that C' = 1.
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3. Main results

Throughout this section, let {X,;, —00 <% < 0o,n > 1} be an array
of random elements defined on a probability space (2, F, P) and taking
values in a real separable Banach space. Let {U,,n > 1} and {V,,n >
1}, where U,, < V,, almost surely for all n > 1, be sequences of integer
valued random variables.

Let {kn,n > 1} and {b,,n > 1} be sequences of positive constants
such that k, — 00, b, — 0o. Next, assume that {u,,n > 1} and {v,,n >
1} are two sequences of integers, u, > —00,v, < 0o such that u, < vy,
for all n > 1. Set Fpj = o{Xpi, un <@ < j}if § > up, and Fp; = {0,Q}
it j < up,m>1.

To prove our main results, we will need the following lemma.

LEMMA 1. Assume that

k
-2 — 0 for some p > 0.

v
Suppose that there exists a positive nondecreasing function g on [0, 00)
satisfying

o0
i p
lim g(a) =0, ) gP(1/5) <
j=1
and
kn—1

P(
Zg J-I—l 9"G) _ o).
Moreover, let

sup su aP(|| Xnil| > < 00
supsup - 3 P > a(0) <

i=Unp
and )
1 n
lim sup — aP(|| Xl > g(a)) =0.
Jim sup - 3 aP(1%ul > o)
Then

Zn E|| Xnil PI(|| Xnsl] < g(kn)) = o(BF).

1=Un

Proof. The proof is same as that of Sung et al. [13] except that p
and || Xp;|| are used instead of 8 and | X,;|, respectively. O

Now we state and prove one of our main results. -
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THEOREM 1. Let 0 < p < 2. Assume that
P(Up < up) =o0(1) and P(V, > v,) = 0(1) as n — oo.
When 1 < p < 2, we assume further that the underlying Banach space
is of martingale type p. Under the same conditions of Lemma 1,

Vi
Z (Xni — ¢ni)/bn, — 0 in probability,
1=Un
where c,; =0 if 0 < p <1 and ¢p; = E(Xpi L (|| Xnil| < 9(kn))|Fni1) if
1<p<2

Proof. Let X/, = Xp:I(||Xnil| £ g(kn)) for —oo < 4 < oco,n > 1.
Then

Vn Vn
P(II'Y Xni/bn = Y Xni/bull > €)

i=Up 1=Un
< P(Un < up) + P(Vy > 'Un) + P(U’;};un(Xni # X;n))
o(1) + P(UiZ,, (1 Xnsll > g(kn))

I

< o(1) + Y P(IXuill > glkn)

i=Un
= o(1) + k;* Z knP(|| Xnill > g(kn)),
1=Un
so that EZV;’U” Xni/bn — Z:V:"Un X];/bn — 0 in probability. Thus, to
prove the theorem it is enough to show that

Vn
Z (X); — cni)/bn, — 0 in probability.
i=Un

For n > 1 and any integers j < m denote
m
B = {I1 D (Xni = cni)ll > bne}
i=j

and Dy, = Uy, <j<m<uv, Bjy,- Then

P(Bg, v.) < P(Bp, v,y Un 2 tn, Vo < o) + PU, < up)+ P(Vy, > vy)
< P(Dy) +o(1),
and hence it is sufficient to show that P(Dy,) = o(1).
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First, we consider the case of 0 < p < 1. Since ¢ = O,vit follows by
the Markov’s inequality and Lemma 1 that

P(Dn) = P un<IJIl<arr)’L(<v ” Z Cm ” > bnf)
<—F I P
= €Pbh uns?ia%{Sv Z O

< ZEII illP/(ePb}) — 0.

i=Un

Now we consider the case of 1 < p < 2. In this case, X], — cns, un <
1 < vp, form a martingale difference sequence. Since the underlying
Banach space is of martingale type p,

P(Dn) = P(, max IIZ —cn)ll > bne)
< B max I Z —¢ni)|[P (by Markov’s inequality)
T PWh T un<j<m<un ni)
1 j—1
= P ! — Cni) — ' e [P
= epngunS?Lagl{Svn H i; (an cm) 1; (an an)H
2P— m
< p B P
= P ungjr;agf@nﬂi; (X} — cni)ll +||1Zu -l
(by cr—inequality)
2p
< p
< ogf,mex, | 3 (X = el
P=Un
< 7In - Cm'“p
I=Un
2p—1 Un
< Z E||X|IP + E|lenil|P (by cr-inequality)
1=Un

C 2% &
Z E||X];|IP — 0 (by Jensen’s inequality and Lemma 1),

i=Un

where C;, is a constant depending only on p. O
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COROLLARY 1. Assume that the underlying Banach space is of mar-
tingale type p,1 <p <2 and 0 < r < p. Suppose that

Un

1
Sup sup — aP (|| Xnil|” > a) <
SUpSup Z ([ Xnsll" > a)

Un

and
Un

1
lim sup — aP(|| Xnill” > a) =0.
a—>oon21; kn, z:zun (H m“ )

Moreover, assume that
P(U, < up) = o(1) and P(V, > vy) = o(1) as n — oo.

Then

Vn

Z (Xni — cni)/ kL™ — 0 in probability,

i=Un
where ¢p; = 0 if 0 < r < 1 and cp; = E(Xp I (|| Xnil|” < kn)|Fnji-1) if
1<r<2.

Proof. The proof is similar to that of Corollary 1 of Sung et al. [13]
and is omitted. U

THEOREM 2. Let {X,,n > 1} be a sequence of random elements
taking values in a real separable Banach space of martingale type p (1 <
p < 2), which is uniformly bounded by a random variable X such that
aP(|X|" > a) —» 0 as a — oo for some 0 < r < p. Let {|ani|",1 < i <
00,n > 1} be a Toeplitz array of constants, i.e.,

lim a,; = 0 for every i
n—od

and
0
sup z lan;|” < C for some constant C > 0.

n2li—

If sup;> |an:| — 0 as n — oo, then
oo
Z ani(Xi — cni) — 0 in probability,
i=1

where ¢p; = 0If0 < r <1 and ¢y = E(XZI(HaszHT < 1)|f7;_.1) if
1<r<2(F,=0{Xi1 <i<n} and Fy = {0,0Q}).

Proof. The proof is similar to that of Theorem 3 of Sung et al. [13]
and is omitted. ' a
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