• 제목/요약/키워드: Visible light-reactive

검색결과 52건 처리시간 0.035초

Photocatalytic Generated Oxygen Species Properties by Fullerene Modified Two-Dimensional MoS2 and Degradation of Ammonia Under Visible Light

  • Zou, Cong-Yang;Meng, Ze-Da;Zhao, Wei;Oh, Won-Chun
    • 한국재료학회지
    • /
    • 제31권6호
    • /
    • pp.353-366
    • /
    • 2021
  • In this study, photocatalytic degradation of ammonia in petrochemical wastewater is investigated by solar light photocatalysis. Two-dimensional ultra-thin atomic layer structured MoS2 are synthesized via a simple hydrothermal method. We examine all prepared samples by means of physical techniques, such as SEM-EDX, HRTEM, FT-IR, BET, XRD, XPS, DRS and PL. And, we use fullerene modified MoS2 nanosheets to enhance the activity of photochemically generated oxygen (PGO) species. Surface area and pore volumes of the MoS2-fullerene samples significantly increase due to the existence of MoS2. And, PGO oxidation of MB, TBA and TMST, causing its concentration in aqueous solution to decrease, is confirmed by the results of PL. The generation of reactive oxygen species is detected through the oxidation reaction from 1,5-diphenyl carbazide (DPCI) to 1,5-diphenyl carbazone (DPCO). It is found that the photocurrent density and the PGO effect increase in the case with modified fullerene. The experimental results show that this heterogeneous catalyst has a degradation of 88.43% achieved through visible light irradiation. The product for the degradation of NH3 is identified as N2, but not NO2- or NO3-.

Reactive Magnetron Sputtering 적용 CuNx-Cu-CuNx 적층형 Metal Mesh 터치센서 전극 특성 연구 (A Study on the Metal Mesh for CuNx-Cu-CuNx Multi-layer Touch Electrode by Reactive Magnetron Sputtering)

  • 김현석;양성주;노경재;이성의
    • 한국전기전자재료학회논문지
    • /
    • 제29권7호
    • /
    • pp.414-423
    • /
    • 2016
  • In the present study, the $CuN_x-Cu-CuN_x$ layer the partial pressure ratio Cu metal of Ar and $N_2$ gas using a DC magnetron sputtering device, was generated by the In-situ method. $CuN_x$ layer was able to obtain a surface reflectance reduction effect from the advantages of the process and the external light. $CuN_x$ layer is gas partial pressure, DC the Power, the deposition time variable transmittance in response to the thickness and partial pressure ratio, the reflectance was measured. $Ar:N_2$ gas ratio 10:10(sccm), DC power 0.35 A, was derived Deposition time 90 sec optimum conditions. Thus, according to the optimal thickness and the composition ratio was derived surface reflectance of 20.75%. In addition, to derive the value of ${\Delta}$ Ra surface roughness of 0.467. It was derived $CuN_x$ band-gap energy of about 2.2 eV. Thus, to ensure a thickness and process conditions can be absorbed to maximize the light in a wavelength band in the visible light region. As a result, the implementation of the $12k{\Omega}$ base line resistance of using the Cu metal. This is, 5 inch Metal mesh TSP(L/S: $4/270{\mu}m$) is in the range of the reference operation.

Characterization of a Crystallized ZnO/CuSn/ZnO Multilayer Film Deposited with Low Temperature Magnetron Sputtering

  • Kim, Dae-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • 제10권5호
    • /
    • pp.169-172
    • /
    • 2009
  • The ZnO/CuSn/ZnO (ZCSZ) multilayer films were deposited on polycarbonate substrates using reactive RF and DC magnetron sputtering. The thickness of each layer was 50 nm/5 nm/45 nm, respectively. The ZCSZ films showed a sheet resistance of $44{\Omega}$/Sq, which was an order of magnitude lower than that indium tin oxide (ITO) films. Although the ZCSZ films had a CuSn interlayer that absorbed visible light, both films had similar optical transmittances of 74% in the visible wavelength region. The figure of merit of the ZCSZ films was $1.0{\times}10^{-3}{\Omega}^{-1}$ and was greater than the value of the ITO films, $1.6{\times}10^{-4}{\Omega}^{-1}$. From the X-ray diffraction (XRD) analysis, the ITO films did not show any diffraction peaks, whereas the ZCSZ films showed diffraction peaks for the ZnO (100) and (002) phases. The hardness of the ITO and ZCSZ films were 5.8 and 7.1 GPa, respectively, which were determined using nano-indentation. From these results, the ZCSZ films exhibited greater optoelectrical performance and hardness compared to the conventional ITO films.

DC 마그네트론 반응성 스퍼터링법에 의해서 제작된 TiO-N 박막의 구조 및 광학적특성에 관한 연구 (Studies on Structure and Optical Characteristics of TiO-N Thin Film Manufactured by DC Reactive Magnetron Sputtering Method)

  • 박장식;박상원;김태우;김성국;안원술
    • 한국표면공학회지
    • /
    • 제37권6호
    • /
    • pp.307-312
    • /
    • 2004
  • Extensive efforts have been made in an attempt to utilize photocatalytic properties of $TiO_2$ in visible range. $TiO_2$ and TiO-N thin films were made by the DC reactive magnetron sputtering method at $300^{\circ}C$. Various gases (Ar, $O_2$ and $N_2$) were used and Ti target was impressed by 0.6 kW-5.8 kW power range. The hysteresis phenomenon of the $TiO_2$ thin film as a function of the discharge voltage characteristic was observed to be higher as applied power increases. That of TiO-N thin film was occurred at the 5.8 kW power. The cross section and surface roughness of thin films were observed by FE-SEM and AFM. Average surface roughness of TiO-N thin film was observed as $15.9\AA$ and that of $TiO_2$ as $13.2\AA$. The crystal phases of both $TiO_2$ and TiO-N thin films were found to be anatase structure. The atomic $\beta$-N (396 eV peak in N 1s XPS) was shown in the rutile crystal of TiO-N and was considered acting as the origin of wavelength shift to the visible light.

반응성 DC 마그네트론 스퍼터법에 의한 $SnO_2$ 박막재조 및 특성 (Preparation of $SnO_2$ Thin Film Using Reactive DC Magnetron Sputtering)

  • 정혜원;이천;신재혁;송국현;신성호;박정일;박광자
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 C
    • /
    • pp.1352-1354
    • /
    • 1997
  • Transparent conductive thin films have found many application in many active and passive electronic and opto-electronic devices as like flat Panel display electrode and window heat mirror, etc. Low resistivity and high transmittance of this films can be obtained by controlling deposition parameters, which are oxygen partial Pressure, substrate temperature and dopant concentration. In this study, We prepared non-stoichiometric and Sb-doped thin films of tin dioxide by reactive DC magnetron sputtering technology. The lowest resistivity of about $3.0{\times}10^{-3}\;{\Omega}cm$ and 80% transmittance in the visible light region have heed obtained at optimal deposition condition.

  • PDF

Reactive sputtering 법으로 증착된 AZO 박막의 전기적 및 구조적 특성 (Electrical and structural characteristics of AZO thin films deposited by reactive sputtering)

  • 허주희;이유림;이규만
    • 반도체디스플레이기술학회지
    • /
    • 제8권1호
    • /
    • pp.33-38
    • /
    • 2009
  • We have investigated the effect of the ambient gases on the characteristics of AZO thin films for the OLED (organic light emitting diodes) devices. These AZO thin films are deposited by rf-magnetron sputtering under different ambient gases (Ar, Ar+$O_2$, and Ar+$H_2$) at 300. In order to investigate the influences of the oxygen and hydrogen, the flow rate of oxygen and hydrogen in argon mixing gas has been changed from 0.2sccm to 1sccm and from 0.5sccm to 5sccm, respectively. The AZO thin films were preferred oriented to (002) direction regardless of ambient gases. The electrical resistivity of AZO film increased with increasing flow rate of $O_2$ under Ar+$O_2$ while under Ar+$H_2$ atmosphere the electrical resistivity showed minimum value near 1sccm of $H_2$. All the films showed the average transmittance over 80% in the visible range. The OLED device was fabricated with different AZO substrates made by configuration of AZO/$\acute{a}$-NPD/DPVB/$Alq_3$/LiF/Al to elucidate the performance of AZO substrate.

  • PDF

Fabrication of Microwire Arrays for Enhanced Light Trapping Efficiency Using Deep Reactive Ion Etching

  • 황인찬;서관용
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.454-454
    • /
    • 2014
  • Silicon microwire array is one of the promising platforms as a means for developing highly efficient solar cells thanks to the enhanced light trapping efficiency. Among the various fabrication methods of microstructures, deep reactive ion etching (DRIE) process has been extensively used in fabrication of high aspect ratio microwire arrays. In this presentation, we show precisely controlled Si microwire arrays by tuning the DRIE process conditions. A periodic microdisk arrays were patterned on 4-inch Si wafer (p-type, $1{\sim}10{\Omega}cm$) using photolithography. After developing the pattern, 150-nm-thick Al was deposited and lifted-off to leave Al microdisk arrays on the starting Si wafer. Periodic Al microdisk arrays (diameter of $2{\mu}m$ and periodic distance of $2{\mu}m$) were used as an etch mask. A DRIE process (Tegal 200) is used for anisotropic deep silicon etching at room temperature. During the process, $SF_6$ and $C_4F_8$ gases were used for the etching and surface passivation, respectively. The length and shape of microwire arrays were controlled by etching time and $SF_6/C_4F_8$ ratio. By adjusting $SF_6/C_4F_8$ gas ratio, the shape of Si microwire can be controlled, resulting in the formation of tapered or vertical microwires. After DRIE process, the residual polymer and etching damage on the surface of the microwires were removed using piranha solution ($H_2SO_4:H_2O_2=4:1$) followed by thermal oxidation ($900^{\circ}C$, 40 min). The oxide layer formed through the thermal oxidation was etched by diluted hydrofluoric acid (1 wt% HF). The surface morphology of a Si microwire arrays was characterized by field-emission scanning electron microscopy (FE-SEM, Hitachi S-4800). Optical reflection measurements were performed over 300~1100 nm wavelengths using a UV-Vis/NIR spectrophotometer (Cary 5000, Agilent) in which a 60 mm integrating sphere (Labsphere) is equipped to account for total light (diffuse and specular) reflected from the samples. The total reflection by the microwire arrays sample was reduced from 20 % to 10 % of the incident light over the visible region when the length of the microwire was increased from $10{\mu}m$ to $30{\mu}m$.

  • PDF

λ/2 Retardation Film을 이용한 3단계 투과율 가변 스마트윈도우 제작 (Fabrication of 3-Step Light Transmittance-variable Smart Windows based on λ/2 Retardation Film)

  • 김일구;양호창;박영민;서요한;홍영규;이승현
    • 마이크로전자및패키징학회지
    • /
    • 제30권3호
    • /
    • pp.78-82
    • /
    • 2023
  • 본 연구에서는 Reactive mesogen (RM) 기반 λ/2 위상지연 필름과 편광필름을 이용하여 3단계로 투과율 가변이 가능한 스마트윈도우 제조 기술을 제안한다. λ/2 위상지연 필름은 위상차 (Γ) 값이 π (Δn·d=λ/2)이며, 위상지연 필름에 입사된 빛의 진행방향을 필름의 광축에 대칭된 각도로 변환시키는 특징이 있다. 위상지연 필름의 Δn·d 값이 λ/2에 근접할수록 변환 특성이 우수하기 때문에 본 연구에서는 복굴절 물질인 RM 두께별 retardation (Δn·d) 특성 평가를 통해 Δn·d가 λ/2(=275 nm@550 nm)에 근접한 276.1 nm의 값을 갖는 위상지연 필름을 제작하였다. 최종적으로 (편광필름)/(유리기판)/(배향막)/(λ/2 retardation film) 구조의 스마트윈도우를 제작하여 투과모드, 반투과모드, 차단모드에서의 광 투과 특성을 평가하였다. 평가결과 투과율은 각각 35.8%, 27.8%, 18.2%의 값을 나타내었으며, 이를 통해 λ/2 위상지연 필름을 이용하여 3단계로 투과율 제어 가능함을 확인하였다. 또한 150×200 mm2 크기의 스마트윈도우를 구현함으로써 건축물, 자동차 등 다양한 분야의 활용 가능성을 확인하였다.

Photo-controlled gene expression by fluorescein-labeled antisense oligonucleotides in combination with visible light irradiation

  • Ito, Atsushi;Kaneko, Tadashi;Miyamoto, Yuka;Ishii, Keiichiro;Fujita, Hitoshi;Hayashi, Tomonori;Sasaki, Masako
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.451-453
    • /
    • 2002
  • A new concept of "photo" -antisense method has been evaluated, where the inhibition of gene expression by the conventional antisense method is enhanced by photochemical binding between antisense oligonucleotides conjugated with photo-reactive compound and target mRNA or DNA. Fluorescein labeled oligodeoxyribonucleotides (F-DNA) was delivered to cell nuclei in the encapsulated form in multilamellar lecithin liposomes with neutral charge. F-DNA was previously shown to photo-bind to the complementary stranded DNA, and the delivery system using neutral liposome to be effective in normal human keratinocytes. In the present study, we used human kidney cancer G401.2/6TG.1 cell line to be advantageous in reproducible experiments. p53 was adopted as a target gene since antisense sequence information has been accumulated. The nuclear localization ofF-DNA was identified by comparing the fluorescence ofF-DNA with that of Hoechst 33258 under fluorescence microscope. After 7hr incubation to accumulate p53 protein induced by UV -B, p53 protein was quantified by Western blot. After 2hrs from F-DNA application, about 30% of cell population incorporated F-DNA in their nuclei with some morphological change possibly due to liposomal toxicity. Irradiation of visible light longer than 400nm from solar simulator at this time enhanced the inhibitory action of antisense F-DNA. The present results suggest that photo-antisense method is promising to control gene expression in time and space dependent manner. Further improvement of F-DNA delivery to cancer cells in the stability and toxicity is in progress. progress.

  • PDF

Sonophotocatalytic Performance of Bi2Se3-Graphene/TiO2 Hybrid Nanomaterials Synthesized with a Microwave-assisted Method

  • Zhu, Lei;Jo, Sun-Bok;Ye, Shu;Ullah, Kefayat;Oh, Won-Chun
    • 한국세라믹학회지
    • /
    • 제51권3호
    • /
    • pp.162-169
    • /
    • 2014
  • This paper introduces a microwave-assisted synthesis method to prepare hybrid $Bi_2Se_3-GR/TiO_2$ nanocomposites, which exhibit superior properties over single component materials. The as-prepared composites were characterized by XRD, UV-vis absorbance spectra, SEM,TEM, EDX, and BET analyses, revealing uniform covering of the graphene nanosheet with $Bi_2Se_3$ and $TiO_2$ nanocrystals. For visible light photocatalysis of Rh.B, a significant enhancement in the reaction rate was consequently observed with $Bi_2Se_3-GR/TiO_2$ composites. The degradation rate($k_{app}$) obtained for sonophotocatalysis was $6.8{\times}10^{-3}min^{-1}$, roughly 2.2 times better than that of VL photocatalysis under higher concentrations of Rh.B. The sonophotocatalysis was faster due to greater formation of reactive radicals as well as an increase of the active surface area of the $Bi_2Se_3-GR/TiO_2$ composites. The high activity is attributed to the synergetic effects of high charge mobility and red shift of the absorption edge of $Bi_2Se_3-GR/TiO_2$.