Browse > Article

Studies on Structure and Optical Characteristics of TiO-N Thin Film Manufactured by DC Reactive Magnetron Sputtering Method  

Park Jang Sick (미래엔지니어링)
Park Sang Won (계명대학교 환경공학부)
Kim Tae Woo (미래엔지니어링)
Kim Sung Kuk (계명대학교 환경공학부)
Ahn Won Sool (계명대학교 공과대학)
Publication Information
Journal of the Korean institute of surface engineering / v.37, no.6, 2004 , pp. 307-312 More about this Journal
Abstract
Extensive efforts have been made in an attempt to utilize photocatalytic properties of $TiO_2$ in visible range. $TiO_2$ and TiO-N thin films were made by the DC reactive magnetron sputtering method at $300^{\circ}C$. Various gases (Ar, $O_2$ and $N_2$) were used and Ti target was impressed by 0.6 kW-5.8 kW power range. The hysteresis phenomenon of the $TiO_2$ thin film as a function of the discharge voltage characteristic was observed to be higher as applied power increases. That of TiO-N thin film was occurred at the 5.8 kW power. The cross section and surface roughness of thin films were observed by FE-SEM and AFM. Average surface roughness of TiO-N thin film was observed as $15.9\AA$ and that of $TiO_2$ as $13.2\AA$. The crystal phases of both $TiO_2$ and TiO-N thin films were found to be anatase structure. The atomic $\beta$-N (396 eV peak in N 1s XPS) was shown in the rutile crystal of TiO-N and was considered acting as the origin of wavelength shift to the visible light.
Keywords
Photocatalysis; TiO$_2$; TiO-N; Hysteresis; Discharge voltage characteristics; Optical absorption spectrum;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 I. J. M. Bennett et al., Appl. Opt., 28 (1989) 3303
2 A. J. Perry, H. K. Pulker, Thin Solid Films, 124 (1985) 323
3 R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science, 293 (2001) 269
4 Y. Taga, Materials Integration, 16 (2003) 34
5 M. H. Suhail, G. Mohan Rao, S. Mohan, J. Appl. Phys., 71 (1992) 1421   DOI
6 W. T. Pawlewicz, R. Busch, Thin Solid Films, 63 (1979) 251
7 M. J. Jung, K. H. Nam, Y. M. Chung, J. H. Boo, J. G. Han, Surface and Coating Technology, 171 (2003) 71
8 A. L. Linsevigler, G. Q. Lu, J. T. Yates, Chern. Rev., 95 (1995) 735   DOI   ScienceOn
9 S. Takeda, S. Suzuke, H. Odaka, H. Hosono, Thin Solid Film, 392 (2001) 338
10 P. Zeman, S. Takabayashi, J. Vac. Sci. Technol., A20 (2002) 388
11 J. L. Vossen, J. J. Cuomo in Thin Film Process, edited by Vossen and Kern (Academic, New York, (1978), p. 42
12 S. Schiller, G. Beister, W. Sieber, Thin Solid Films, 38 (1976) 271
13 J. Heller, Thin Solid Films, 17 (1973) 163
14 H. Tang, K. Prasad, R. Sanjines, P. E. Schmid, F. Levy, J Appl. Phys., 75 (1994) 2042
15 G. W. Kang, Y. H. Lee, J. C. Kwak, D. G. Lee, B. K. Jung, S. H. Park, B. H. Choi, Kor. J. Mater. Res., 12 (2002) 452   DOI
16 N. C. Saha, H. G. Tompkins, J. Appl. Phys., 72 (1992) 3072   DOI
17 K. Bange, C. R. Ottermann, O. Anderson, V. Jeschkowski, Thin Solid Films, 197 (1991) 279   DOI   ScienceOn
18 Y. L. Choi, S. H. Kim, G. H. Lee, Kor. J. Mater. Res., 11 (2001) 75
19 K. H. Ro, W. Park, G. Choe, J. C. Ahn, Kor, J. Mater. Res., 7 (1997) 21
20 K. L. Hadjiivanov, D. K. Klissurski Chern. Soc. Rev., 25 (1995) 61
21 S. Schiller, G. Beister, S. Schneider, W. Sieber, Thin Solid Films, 72 (1980) 475
22 G. Mohan Rao, S. Mohan, J. Appl. Phys., 69 (1991) 6652