Browse > Article
http://dx.doi.org/10.4313/TEEM.2009.10.5.169

Characterization of a Crystallized ZnO/CuSn/ZnO Multilayer Film Deposited with Low Temperature Magnetron Sputtering  

Kim, Dae-Il (School of Materials Science and Engineering, University of Ulsan)
Publication Information
Transactions on Electrical and Electronic Materials / v.10, no.5, 2009 , pp. 169-172 More about this Journal
Abstract
The ZnO/CuSn/ZnO (ZCSZ) multilayer films were deposited on polycarbonate substrates using reactive RF and DC magnetron sputtering. The thickness of each layer was 50 nm/5 nm/45 nm, respectively. The ZCSZ films showed a sheet resistance of $44{\Omega}$/Sq, which was an order of magnitude lower than that indium tin oxide (ITO) films. Although the ZCSZ films had a CuSn interlayer that absorbed visible light, both films had similar optical transmittances of 74% in the visible wavelength region. The figure of merit of the ZCSZ films was $1.0{\times}10^{-3}{\Omega}^{-1}$ and was greater than the value of the ITO films, $1.6{\times}10^{-4}{\Omega}^{-1}$. From the X-ray diffraction (XRD) analysis, the ITO films did not show any diffraction peaks, whereas the ZCSZ films showed diffraction peaks for the ZnO (100) and (002) phases. The hardness of the ITO and ZCSZ films were 5.8 and 7.1 GPa, respectively, which were determined using nano-indentation. From these results, the ZCSZ films exhibited greater optoelectrical performance and hardness compared to the conventional ITO films.
Keywords
ZnO; CuSn; Sputtering; Sheet resistance; Optical transmittance;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. May, Y. Tomita, M. Toerker, M. Eritt, F. Loeffler, J. Amelung, and K. Leo, Thin Solid Films, 516, 4609 (2008)   DOI   ScienceOn
2 H. J. Park, J. H. Park, J. I. Choi, J. Y. Lee, J. H. Chae, and D. Kim, Vacuum, 83, 448 (2008)   DOI   ScienceOn
3 G. Haacke, J. Appl. Phys. 47, 4086 (1976)   DOI   ScienceOn
4 D. R. Sahu, S.-Y. Lin, and J.-L. Huang, Appl. Surf. Sci. 252, 7509 (2006)   DOI   ScienceOn
5 T. K. Yong, T. Y. Tou, and B. S. Teo, Appl. Surf. Sci. 248, 388 (2005)   DOI   ScienceOn
6 H. Takeda, Y. Sato, Y. Iwabuchi, M. Yoshikawa, and Y. Shigesato, Thin Solid Films, 517, 3048 (2009)   DOI
7 M. Boehme and C. Charton, Surf. Coat. Technol. 200, 932 (2005)   DOI   ScienceOn
8 C. V. Thompson, Annu. Rev. Mater. Sci. 20, 245 (1990)   DOI
9 D. Kim, J. Non-Cryst. Solids, 331, 41 (2003)   DOI   ScienceOn
10 A. B. Chebotareva, G. G. Untila, T. N. Kost, S. Jorgensen, and A. G. Ulyashin, Thin Solid Films, 515, 8505 (2007)   DOI   ScienceOn
11 D. Kim, and S. Kim, Surf. Coat. Technol. 176, 23 (2003)   DOI   ScienceOn
12 Y. S. Kim, J. H. Park, and D. Kim, Vacuum, 82, 574 (2008)   DOI   ScienceOn
13 C. H. Yang, S. C. Lee, T. C. Lin, and S. C. Chen, Thin Solid Films, 516, 1984, (2008)   DOI   ScienceOn
14 L. J. Zhuge, X. M. Wu, Z. F. Wu, X. M. Chen, and Y. D. Meng, Scr. Mater. 60, 214 (2009)   DOI   ScienceOn