Studies on Structure and Optical Characteristics of TiO-N Thin Film Manufactured by DC Reactive Magnetron Sputtering Method

DC 마그네트론 반응성 스퍼터링법에 의해서 제작된 TiO-N 박막의 구조 및 광학적특성에 관한 연구

  • Published : 2004.12.01

Abstract

Extensive efforts have been made in an attempt to utilize photocatalytic properties of $TiO_2$ in visible range. $TiO_2$ and TiO-N thin films were made by the DC reactive magnetron sputtering method at $300^{\circ}C$. Various gases (Ar, $O_2$ and $N_2$) were used and Ti target was impressed by 0.6 kW-5.8 kW power range. The hysteresis phenomenon of the $TiO_2$ thin film as a function of the discharge voltage characteristic was observed to be higher as applied power increases. That of TiO-N thin film was occurred at the 5.8 kW power. The cross section and surface roughness of thin films were observed by FE-SEM and AFM. Average surface roughness of TiO-N thin film was observed as $15.9\AA$ and that of $TiO_2$ as $13.2\AA$. The crystal phases of both $TiO_2$ and TiO-N thin films were found to be anatase structure. The atomic $\beta$-N (396 eV peak in N 1s XPS) was shown in the rutile crystal of TiO-N and was considered acting as the origin of wavelength shift to the visible light.

Keywords

References

  1. I. J. M. Bennett et al., Appl. Opt., 28 (1989) 3303
  2. H. Tang, K. Prasad, R. Sanjines, P. E. Schmid, F. Levy, J Appl. Phys., 75 (1994) 2042
  3. A. J. Perry, H. K. Pulker, Thin Solid Films, 124 (1985) 323
  4. S. Takeda, S. Suzuke, H. Odaka, H. Hosono, Thin Solid Film, 392 (2001) 338
  5. P. Zeman, S. Takabayashi, J. Vac. Sci. Technol., A20 (2002) 388
  6. K. H. Ro, W. Park, G. Choe, J. C. Ahn, Kor, J. Mater. Res., 7 (1997) 21
  7. Y. L. Choi, S. H. Kim, G. H. Lee, Kor. J. Mater. Res., 11 (2001) 75
  8. K. L. Hadjiivanov, D. K. Klissurski Chern. Soc. Rev., 25 (1995) 61
  9. A. L. Linsevigler, G. Q. Lu, J. T. Yates, Chern. Rev., 95 (1995) 735 https://doi.org/10.1021/cr00035a013
  10. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science, 293 (2001) 269
  11. M. J. Jung, K. H. Nam, Y. M. Chung, J. H. Boo, J. G. Han, Surface and Coating Technology, 171 (2003) 71
  12. Y. Taga, Materials Integration, 16 (2003) 34
  13. G. Mohan Rao, S. Mohan, J. Appl. Phys., 69 (1991) 6652
  14. J. Heller, Thin Solid Films, 17 (1973) 163
  15. J. L. Vossen, J. J. Cuomo in Thin Film Process, edited by Vossen and Kern (Academic, New York, (1978), p. 42
  16. G. W. Kang, Y. H. Lee, J. C. Kwak, D. G. Lee, B. K. Jung, S. H. Park, B. H. Choi, Kor. J. Mater. Res., 12 (2002) 452 https://doi.org/10.3740/MRSK.2002.12.6.452
  17. M. H. Suhail, G. Mohan Rao, S. Mohan, J. Appl. Phys., 71 (1992) 1421 https://doi.org/10.1063/1.351264
  18. S. Schiller, G. Beister, W. Sieber, Thin Solid Films, 38 (1976) 271
  19. W. T. Pawlewicz, R. Busch, Thin Solid Films, 63 (1979) 251
  20. K. Bange, C. R. Ottermann, O. Anderson, V. Jeschkowski, Thin Solid Films, 197 (1991) 279 https://doi.org/10.1016/0040-6090(91)90238-S
  21. S. Schiller, G. Beister, S. Schneider, W. Sieber, Thin Solid Films, 72 (1980) 475
  22. N. C. Saha, H. G. Tompkins, J. Appl. Phys., 72 (1992) 3072 https://doi.org/10.1063/1.351465