Browse > Article
http://dx.doi.org/10.4191/kcers.2014.51.3.162

Sonophotocatalytic Performance of Bi2Se3-Graphene/TiO2 Hybrid Nanomaterials Synthesized with a Microwave-assisted Method  

Zhu, Lei (Department of Advanced Materials Science & Engineering, Hanseo University)
Jo, Sun-Bok (Department of Advanced Materials Science & Engineering, Hanseo University)
Ye, Shu (Department of Advanced Materials Science & Engineering, Hanseo University)
Ullah, Kefayat (Department of Advanced Materials Science & Engineering, Hanseo University)
Oh, Won-Chun (Department of Advanced Materials Science & Engineering, Hanseo University)
Publication Information
Abstract
This paper introduces a microwave-assisted synthesis method to prepare hybrid $Bi_2Se_3-GR/TiO_2$ nanocomposites, which exhibit superior properties over single component materials. The as-prepared composites were characterized by XRD, UV-vis absorbance spectra, SEM,TEM, EDX, and BET analyses, revealing uniform covering of the graphene nanosheet with $Bi_2Se_3$ and $TiO_2$ nanocrystals. For visible light photocatalysis of Rh.B, a significant enhancement in the reaction rate was consequently observed with $Bi_2Se_3-GR/TiO_2$ composites. The degradation rate($k_{app}$) obtained for sonophotocatalysis was $6.8{\times}10^{-3}min^{-1}$, roughly 2.2 times better than that of VL photocatalysis under higher concentrations of Rh.B. The sonophotocatalysis was faster due to greater formation of reactive radicals as well as an increase of the active surface area of the $Bi_2Se_3-GR/TiO_2$ composites. The high activity is attributed to the synergetic effects of high charge mobility and red shift of the absorption edge of $Bi_2Se_3-GR/TiO_2$.
Keywords
Microwave-assisted synthesis; Visible light; Sonophotocatalysis; Graphene hybrid; $Bi_2Se_3$;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 D. Li, M. B. Muller, S. Giljem, and G. G. Wallace, "Processable Aqueous Dispersions of Graphene Nanosheets," Nat. Nanotechnol., 3 101-05 (2008).   DOI   ScienceOn
2 L. Zhu, T. Ghosh, C. Y. Park, Z. D. Meng, and W. C. Oh, "Enhanced Sonocatalytic Degradation of Rhodamine B by Graphene-$TiO_2$ Composites Synthesized by an Ultrasonic-Assisted Method," Chin. J. Catal., 33 [7-8] 1276-83 (2012).   DOI
3 T. Ghosh, K. Y. Cho, K. Ullah, V. Nikam, C. Y. Park, Z. D. Meng, and W. C. Oh, "High Photonic Effect of Organic Dye Degradation by CdSe-graphene-$TiO_2$ Particles," J. Ind. Eng. Chem., 19 [3] 797-805 (2013).   DOI   ScienceOn
4 Y. Yu, W. T. Sun, Z. D. Hu, Q. Chen, and L. M.Peng, "Oriented $Bi_2Se_3$ Nano Ribbons Film: Structure, Growth, and Photoelectric Properties," Mater. Chem. Phys., 124 [11] 865-69 (2010).   DOI   ScienceOn
5 D. Cai and M. Song, "Preparation of Fully Exfoliated Graphite Oxide Nanoplatelets in Organic Solvents," J. Mater. Chem., 17 3678-80 (2007).   DOI   ScienceOn
6 J. G. Lei, N. Qie, J. Zhou, Y. Y. Hua, and T. H. Ji, "Preparation and Characterization of $TiO_2$ Nanobelts Deposited with $Bi_2Se_3$ Nanoplates," Mater.Lett., 83 108-11 (2012).   DOI   ScienceOn
7 C. Berberidou, I. Poulios, and N. P. Xekoukoulotakis, "Sonolytic, Photocatalytic and Sonophotocatalytic Degradation of Malachite Green in Aqueous Solutions," Appl. Catal. B-Environ., 74 [1-2] 63-72 (2007).   DOI   ScienceOn
8 K. Zhang and W. C. Oh, "Kinetic Study of the Visible Light-induced Sonophotocatalytic Degradation of MB Solution in the Presence of Fe/$TiO_2$-MWCNT Catalyst," B. Kor. Chem. Soc., 31 [6] 1589-95(2010).   과학기술학회마을   DOI   ScienceOn
9 G. M. Scheuermann, L. Rumi, P. Steurer, W. Bannwarth, and R. Mulhaupt, "Palladium Nanoparticles on Graphite Oxide and its Functionalized Graphene Derivatives as Highly Active Catalysts for the Suzuki−Miyaura Coupling Reaction," J. Am. Chem. Soc.,131 8262-70 (2009).   DOI   ScienceOn
10 P. V. Kamat, "Graphene Based Nano Architectures. Anchoring Semiconductor and Metal Nanoparticles on a 2-Dimensional Carbon Support," J. Phys. Chem. Lett., 15 20-27 (2010).
11 J. Sun, H. Zhang, L. H. Guo, and L. X. Zhao, "Two-dimensional Interface Engineering of a Titania-Graphene Nanosheet Composite for Improved Photocatalytic Activity," ACS Appl. Mater. Interfaces., 5 [24] 13035-41 (2013).   DOI   ScienceOn
12 H. Zhang, X. Lv, Y. Li, Y. Wang, and J. Li, "$P_{25}$-Graphene Composite as a High Performance Photocatalyst," ACS Nano.,4 [1] 380-86 (2010).   DOI   ScienceOn
13 R. Pasricha, S.Gupta, and A. K. Srivastava, "A Facile and Novel Synthesis of Ag-Graphene-based Nanocomposites," Small., 5 [20] 2253-59 (2009).   DOI   ScienceOn
14 R. Muszynski, B. Seger, and P. V. Kamat, "Decorating Graphene Sheets with Gold Nanoparticles," J. Phys. Chem., C, 112 [14] 5263-66 (2008).   DOI   ScienceOn
15 Y. Lin, K. Zhang, W. Chen, Y. Liu, Z. Geng, J. Zeng, N. Pan, L. Yan, X. Wang, and J. G. Hou,. "Dramatically Enhanced Photoresponse of Reduced Graphene Oxide with Linker-Free Anchored CdSe Nanoparticles," ACS Nano.,4 [6] 3033-38 (2010).   DOI   ScienceOn
16 A. B. Pandit, P. R. Gogate, and S. Mujumdar, "Ultrasonic Degradation of 2: 4: 6 Trichlorophenol in Presence of $TiO_2$ Catalyst," Ultrason. Sonochem., 8 [3] 227-31 (2001).   DOI   ScienceOn
17 K. Ullah, S. Ye, L. Zhu, Z. D. Meng, S. Sarkar, and W. C. Oh, "Microwave Assisted Synthesis of a Noble Metal-graphene Hybrid Photocatalyst for High Efficient Decomposition of Organic Dyes under Visible Light," Mater. Sci. Eng. B., 180 20-26 (2014).   DOI   ScienceOn
18 S. Das, A. K. Mukhopadhyay, S. Datta, and D. Basu, "Prospects of Microwave Processing: An Overview," Bull. Mater . Sci., 31 [7] 1-13 (2009).
19 D. Robert, "Photosensitization of $TiO_2\;by\;M_xO_y\;and\;M_xS_y$ Nanoparticles for Heterogeneous Photocatalysis Applications," Catal. Today., 122 [1-2] 20-26 (2007).   DOI   ScienceOn
20 V. Stengl, S. Bakardjieva, N. Murafa, V. Houskova , and K. Lang, "Visible-light Photocatalytic Activity of $TiO_2$/ZnS Nanocomposites Prepared by Homogeneous Hydrolysis," Micropor. Mesopor. Mater., 110 [2-3] 370-78 (2008).   DOI   ScienceOn
21 J. C. Kim, J. Choi, Y. B. Lee, J. H. Hong, J. I. Lee, J. W. Yang, W. I. Lee, and N. H. Hur, "Enhanced Photocatalytic Activity in Composites of $TiO_2$ Nanotubes and CdS Nanoparticles," Chem. Commun., 48 5024-26 (2006).
22 M. Anpo and M. Takeuchi, "The Design and Development of Highly Reactive Titanium Oxide Photocatalysts Operating under Visible Light Irradiation," J. Catal., 216 [1-2] 505-16 (2003).   DOI   ScienceOn
23 H. Irie, Y. Watanabe, and K.Hashimoto, "Nitrogen-concentration Dependence on Photocatalytic Activity of $TiO_2-_xN_x$ Powders," J. Phys. Chem., B, 107 [23] 5483-86 (2003).   DOI   ScienceOn
24 H. Kisch, L. Zang, C. Lange, W. F. Maier, C. Meissner, and D. Angew, "Modified Amorphous Titania- A Hybrid Semiconductor for Detoxification and Current Generation by Visible Light," Chem. Int. Ed., 37 [21] 3034-36 (1998).   DOI
25 K. B. Tang, Y. T. Qian, J. H. Zeng, and X. G. Yang, "Solvothermal Route to Semiconductor Nanowires," Adv. Mater.,15 [5] 448-50 (2003).   DOI   ScienceOn
26 R. Luo, X. Sun, L. F. Yan, and W. M. Chen, "Synthesis and Optical Properties of Novel Nickel Disulfide Dendritic Nanostructures," Chem. Lett., 33 830-31 (2004).   DOI   ScienceOn
27 K. Hashimoto, H. Irie, and A. Fujishima, "$TiO_2$ Photocatalysis: A Historical Overview and Future Prospects," Jpn. J. Appl. Phys., 44 [12] 8269-85 (2005).   DOI
28 K. Kadel, L. Kumari, W. Z. Li, J. Y. Huang, and P. Paula, "Provencio Synthesis and Thermoelectric Properties of $Bi_2Se_3$ Nanostructures," Nanoscale. Res. Lett., 6 [1] 57-63 (2011).
29 J. C. Meyer, A. K. Geim, and M. I. Katsnelson, "The Structure of Suspended Graphene Sheets," Nature., 446 60-63 (2007).   DOI   ScienceOn
30 Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Pottsand, and R. S. Ruoff, "Graphene and Graphene Oxide: Synthesis, Properties, and Applications," Adv. Mater., 22 [35] 3906-24 (2010).   DOI   ScienceOn
31 W. C. Oh and F. J. Zhang, "Preparation and Characterization of Graphene Oxide Reduced from a Mild Chemical Method," Asian. J. Chem., 23 875-79 (2011).
32 S. R. Kim, M. K. Parvez, and M. Chhowalla, "UV-reduction of Graphene Oxide and its Application as an Interfacial Layer to Reduce the Back-transport Reactions in Dye-sensitized Solar Cells," Chem. Phys. Lett., 483 [1-3] 124-27 (2009).   DOI   ScienceOn
33 Y. Bessekhouad, D. Robert, and J. V. Weber, "$Bi_2S_3/TiO_2$ and CdS/$TiO_2$ Heterojunctions as an Available Configuration for Photocatalytic Degradation of Organic Pollutant," J. Photochem. Photobiol., A, 163 [3] 569-80 (2004).   DOI   ScienceOn
34 L. Davydov, E. P. Reddy, P. France, and P. G. Smirniotis, "Sonophotocatalytic Destruction of Organic Contaminants in Aqueous Systems on $TiO_2$ Powders,"Appl. Catal. B: Environ., 32 [1-2] 95-105 (2001).   DOI   ScienceOn