• Title/Summary/Keyword: Viral hemorrhagic septicemia (VHS)

Search Result 11, Processing Time 0.017 seconds

Diagnosis Case of Viral Hemorrhagic Septicemia (VHS) in Adult Olive Flounder Paralichthys olivaceus (넙치(Paralichthys olivaceus) 성어의 viral hemorrhagic septicemia (VHS) 진단사례)

  • Kim, In-Woo;Cho, Mi Young;Lee, Han-Na;Han, Hyun Ja;Oh, Yun Kyeong;Lee, Soon Jeong;Jee, Bo Young;Myeong, Jeong-In;Won, Kyoung-Mi
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.45 no.6
    • /
    • pp.666-674
    • /
    • 2012
  • We examined the cause of a disease outbreak in adult olive flounder Paralichthys olivaceus, which occurred at a Korean aquaculture farm in Korea in 2011. The principal signs included an expanded abdomen and congested liver, with persistent mortality (a little over two months). At the beginning of the outbreak, farm administrators misjudged the disease as bacterial in origin, because of the aforementioned signs, persistent mortality, and the detection of bacterial species, including Vibrio spp. and Streptococcus spp. Moreover, the detection of viral hemorrhagic septicemia virus (VHSV) by reverse trasnscription-PCR analysis was complicated by use of the VHS-VN primer set, which has been in general use recently, because it produced weak bands in some samples. Therefore, we recommend the use of at least two different primer sets in the diagnosis of VHSV. Our histopathological findings indicate that necrotizing myocarditis could be considered a pathogenic sign of VHSV infection.

Evaluation of enzyme-linked immunosorbent assay (ELISA) for detection of olive flounder antibodies to viral hemorrhagic septicemia virus (VHSV, genotype IVa) using two Novirhabdovirus antigens

  • Min-Seok Jang;Myung-Joo Oh;Wi-Sik Kim
    • Journal of fish pathology
    • /
    • v.37 no.1
    • /
    • pp.9-15
    • /
    • 2024
  • An enzyme-linked immunosorbent assay (ELISA) with two Novirhabdovirus antigens (viral hemorrhagic septicemia virus, VHSV and infectious hematopoietic necrosis virus, IHNV) was used to detect specific antibodies against VHSV from olive flounder (Paralichthys olivaceus) sera. In ELISA plates with VHSV culture supernatants (VHSV-Ag plate), optical density (OD) values for sera from olive flounder with VHS history (VHS sera) ranged from 0.64±0.36, and those of sera from fish without VHS history (non-VHS sera) ranged from 0.26±0.26. In IHNV-Ag plate, the OD values (0.43±0.28) for VHS sera were quite low compared to those in VHSV-Ag plates, while the OD values for non-VHS sera were almost similar. When the OD values for each serum were calculated by subtracting the OD values in the IHNV-Ag plate from those in the VHSV-Ag plate, the corrected OD values were significantly different between VHS sera and non-VHS sera. The results were completely in line with fish histories of VHS epizootics. It was considered that the corrected OD values may represent the true values recognized by VHSV-specific antibodies.

Effect of Formalin Inactivation on Viral Hemorrhagic Septicemia Virus (VHSV) (Viral Hemorrhagic Septicemia Virus (VHSV)에 대한 포르말린 불활화 의 영향)

  • Park, Jeong Su;Kim, Hyoung Jun;Joo, Young Hun;Kwon, Se Ryun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.52 no.6
    • /
    • pp.644-649
    • /
    • 2019
  • Killed vaccines, developed by inactivation with formalin, have been investigated for many fish viruses. In this study, the inactivation of viral hemorrhagic septicemia virus (VHSV) by formalin was investigated based on the infectivity titer. When viral cell culture supernatants were used, the infectivity titer decreased 1,000-fold at 1 d after treatment with 0.1% (v/v) formalin, but was below the detection limit at 7 and 14 d. Moreover, neither the N nor G gene were detectable by RT-PCR immediately after formalin treatment. In western blot analysis, N protein was not detected by rabbit antiserum against VHSV KR-9225 from 2 d after formalin treatment. On the other hand, when we used a virus that was purified and concentrated ~100 times, the infectivity titer was maintained at 106.05 TCID50/mL, even at 14 d after formalin treatment, and no change in the viral structural proteins was observed. This study provides important data on the production and use of formalin-inactivated vaccines.

Development of monoclonal antibodies against viral hemorrhagic septicemia virus (VHSV, genotype IVa), the causative agent of VHS (VHS (viral hemorrhagic septicemia)의 원인병원체인 VHSV (genotype IVa)에 대한 단클론 항체 개발)

  • Kong, Kyoung-Hui;Oh, Myung-Joo;Jang, Min-Seok;Kim, Choon-Sup;Kim, Wi-Sik
    • Journal of fish pathology
    • /
    • v.32 no.2
    • /
    • pp.59-67
    • /
    • 2019
  • We developed and subsequently characterized mouse antibodies (MAbs) against viral hemorrhagic septicemia virus (VHSV, genotype IVa), the causative agent of VHS. Five hybridoma clones secreting MAbs against VHSV were established. The MAbs recognized the glycoprotein (MAbs 2C10, 18H4, 23H6, and 30B7) and nucleocapsid protein (15E10) of VHSV by western blot analysis. All five MAbs reacted with VHSV-infected cells and tissue homogenates of VHSV-infected olive flounder (Paralichthys olivaceus) by western blot analysis. Whereas, no reactivity was observed in normal cells and tissue homogenates of normal olive flounder. Moreover, these MAbs reacted with VHSV, but did not react with other fish viruses (infectious hematopoietic necrosis virus, hirame rhabdovirus, spring viraemia of carp virus, infectious pancreatic necrosis virus, marine birnavirus, and nervous necrosis virus) by enzyme linked immunosorbent assay (ELISA). These results indicate that the MAbs are specific to VHSV and can be of value in VHSV detection.

Detection of Viral Hemorrhagic Septicemia Virus (VHSV) from marine fish in the South Western Coastal Area and East China Sea (남.서해안과 동중국해 자연산 어류에서 Viral Hemorrhagic Septicemia Virus(VHSV)검출)

  • Lee, Wol-La;Yun, Hyun-Mi;Kim, Seok-Ryel;Jung, Sung-Ju;Oh, Myung-Joo
    • Journal of fish pathology
    • /
    • v.20 no.3
    • /
    • pp.201-209
    • /
    • 2007
  • Viral hemorrhagic septicemia (VHS) is one of the most serious viral disease of farmed rainbow trout and some marine fishes in Europe and North America. It has been reported in various marine fish species of Asian countries and induced cause mass mortality in Japanese flounder (Paralichthys olivaceus) culturing in Korea. The aims of this study were to monitor VHSV in wild marine fishes and to give critical information for controling the disease through prophylactic methods. Prevalence of the viral disease, geological distribution and reservoir of the virus were investigated using wild marine fishes captured in southern coast and east china sea for two years. (Reverse Transcriptase Polymerase Chain Reaction) RT-PCR results showed that VHSV were detected in 17 (10.6%) out of 160 fish. G gene sequences of viral strains isolated in this study were closely related to that of a reference strain, KVHS01-1, belonging to VHSV genotype Ⅰ. The results suggest that some of wild marine fishes are VHSV carriers and may spread the pathogen directly to fish farmed in coastal area.

The safety of live VHSV immersion vaccine at a temperature-controlled culture condition in juvenile olive flounder, Paralichthys olivaceus

  • Yo-Seb, Jang;Soo-Jin, Kim;Su-Young, Yoon;Rahul, Krishnan;Myung-Joo, Oh
    • Journal of fish pathology
    • /
    • v.35 no.2
    • /
    • pp.225-230
    • /
    • 2022
  • Viral hemorrhagic septicemia (VHS) is one of the most serious viral diseases affecting farmed olive flounder (Paralichthys olivaceus) in Asian countries. VHS, caused by viral hemorrhagic septicemia virus (VHSV), occurs in over 80 different cultured and wild fish species worldwide. Our previous study demonstrated that VHSV infection can be restricted by adjusting the water temperature to over 17℃ from the host optima. We confirmed that the effective VHSV immersion vaccine treatment was a tissue culture infection dose (TCID) of 105.5 TCID50/mL at 17℃. However, the safety of live VHSV immersion vaccines remains unclear. The objectives of this study were to 1) demonstrate the safety of the live VHSV immersion vaccine under co-habitant conditions and 2) estimate the pathogenicity of VHSV in live VHSV-vaccinated flounder at 10℃. No mortality was observed in olive flounder treated with the live VHSV immersion vaccine, and the vaccinated flounder challenged with VHSV did not transfer VHSV to naïve fish at 10℃ through cohabitation. VHSV titration was below the detection limit (< 1.3 log TCID50/mL) in live VHSV immersion vaccine-treated flounder challenged with VHSV at 10℃. This study demonstrated that flounder treated with the live VHSV immersion vaccine were resistant to VHSV infection, and the live vaccine was also safe for naïve fish even at a water temperature known to be VHS infectious.

A Basical Study on Viral Haemorrhagic Septicemia of Rainbow trout, Salmo gairdneri (무지개송어의 바이러스성 출혈성 패혈증에 관한 기초적 연구)

  • Lee, Keun-Kwang
    • Journal of fish pathology
    • /
    • v.7 no.1
    • /
    • pp.7-11
    • /
    • 1994
  • The viral hemorrhagic septicemia of rainbow trout, Salmo gairdneri was studied. The hematocrit values of diseased fish were very low than those of normal fish. And, the GOT and GPT values of serum of diseased fish were a little high than those of normal fish. Cytopathic effect of viral agents(serum and organs of diseased fish) was observed with inverted phase contrast microscopy. After 24hrs infection, the cells were showed the cytopathic effect.

  • PDF

Analysis of antigenicity of viral hemorrhagic septicemia virus (VHSV) glycoprotein from cultured olive flounder Paralichthys olivaceus (양식 넙치, Paralichthys olivaceus에서 분리한 viral hemorrhagic septicemia virus (VHSV)의 항원성 분석)

  • Kim, Su-Mi;Jee, Bo-Young;Cho, Mi-Young;Won, Kyoung-Mi;Kim, Jin-Woo;Park, Soo-Il
    • Journal of fish pathology
    • /
    • v.24 no.2
    • /
    • pp.75-84
    • /
    • 2011
  • The amino acid sequence of glycoprotein of Korean VHSV isolate (KR'01-1) was analyzed using the DNAStar Protean system. Based on the flexibility, hydrophilicity, antigenic index and surface probability, three regions (Gp1, Gp2 and Gp3) were selected as potential antigenic determinants. Three oligopeptides containing the amino acid sequences of the three regions were synthesized and polyclonal antibodies were raised against them. The activities of the antibodies were analyzed by Western blotting and virus neutralization test. The results showed that antibodies raised against oligopeptides Gp1 and Gp2 neutralized the infectivity of VHSV, suggesting that they can be possible candidates for subunit vaccines against VHS diseases in olive flounder.

Changes in Fish Viral Disease Outbreaks in the Coastal Area of Korea Due to Increasing Water Temperature, an Impact of Climate Change (기후변화에 기인한 연안 수온상승에 따른 연안 어류의 바이러스성 질병 발생 예측)

  • Kim, Wi-Sik;Kim, Seok-Ryel;Park, Myoung-Ae;Lee, Joon-Soo;Avunje, Satheesha;Kim, Do-Hyung;Oh, Myung-Joo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.46 no.5
    • /
    • pp.582-588
    • /
    • 2013
  • The impact of global warming on aquatic systems has been a priority research area in the past decade. However, the possibility that increased temperatures will cause shifts in viral disease outbreaks has not been well addressed. In the present study, with increasing water temperature (WT) in the coastal area of Korea, we estimated the possibility of changes in fish viral diseases. From the present time, WT may rise between 0.62 and $1.7^{\circ}C$ by 2050, and the effect on aquaculture could be more adverse than benefitial. Red seabream iridovirus disease (RSIVD) and viral nervous necrosis (VNN) cause high mortality above 22 and $24^{\circ}C$, respectively, and outbreaks could commence earlier and persist for prolonged periods. Nevertheless, the period of occurrence of viral hemorrhagic septicemia (VHS), which outbreaks at a lower WT (< $18^{\circ}C$), could be shorter than the current infectious period. Thermal stress in fish causes reductions in growth and immunocompetence; thus, increases in summer WT can lead to the development of new viral diseases. WT has a strong influence on fish population dynamics; therefore, entry of new viruses and changes in the prevalence of infection can be expected if carrier fishes are introduced or migrate to Korean waters.

Histopathologic Characterization of Viral Pathogens in Cultured Olive Flounder, Paralichthys Olivaceus, using in-situ Hybridization Methods (In-situ hybridization 법을 사용한 양식 넙치, Paralichthys olivaceus의 바이러스 감염 질병 특성 고찰)

  • Do, Jeong Wan;Lee, Nam-Sil;Jung, Sung Hee;Kim, Kyung-Kil;Choi, Hye Sung;Park, Jeong Woo;Kim, Yi Cheong
    • Journal of fish pathology
    • /
    • v.26 no.3
    • /
    • pp.163-171
    • /
    • 2013
  • Polymerase chain reaction (PCR) is the most rapid and widely used method to detect viral pathogens. However, this method does not provide histopathologic nature of the virus. In situ hybridization (ISH) with oligonucleotide probes is attractive because it is a rapid method for detection and identification of viral pathogens at sites of tissue infection. In order to understand the histopathologic characterictics of Red sea bream iridovirus (RSIV), viral-hemorrhagic septicemia (VHS) virus and viral nervous necrosis (VNN) virus to cultured olive flounder, we her applied ISH method to various kinds of olive flounder tissues with PCR-positive for these three viruses. We found that these viruses showed different tissue tropism and were detected from different cell types. Our results suggest that ISH is useful not only in rapid detection of viral pathogens but also in understanding the histopathologic characters of specific viral pathogens.