DOI QR코드

DOI QR Code

The safety of live VHSV immersion vaccine at a temperature-controlled culture condition in juvenile olive flounder, Paralichthys olivaceus

  • Yo-Seb, Jang (Department of Aqualife Medicine, Chonnam National University) ;
  • Soo-Jin, Kim (Pathology Division, National Institute of Fisheries Science (NIFS)) ;
  • Su-Young, Yoon (Department of Aqualife Medicine, Chonnam National University) ;
  • Rahul, Krishnan (Department of Aqualife Medicine, Chonnam National University) ;
  • Myung-Joo, Oh (Department of Aqualife Medicine, Chonnam National University)
  • 투고 : 2022.10.24
  • 심사 : 2022.11.18
  • 발행 : 2022.12.31

초록

Viral hemorrhagic septicemia (VHS) is one of the most serious viral diseases affecting farmed olive flounder (Paralichthys olivaceus) in Asian countries. VHS, caused by viral hemorrhagic septicemia virus (VHSV), occurs in over 80 different cultured and wild fish species worldwide. Our previous study demonstrated that VHSV infection can be restricted by adjusting the water temperature to over 17℃ from the host optima. We confirmed that the effective VHSV immersion vaccine treatment was a tissue culture infection dose (TCID) of 105.5 TCID50/mL at 17℃. However, the safety of live VHSV immersion vaccines remains unclear. The objectives of this study were to 1) demonstrate the safety of the live VHSV immersion vaccine under co-habitant conditions and 2) estimate the pathogenicity of VHSV in live VHSV-vaccinated flounder at 10℃. No mortality was observed in olive flounder treated with the live VHSV immersion vaccine, and the vaccinated flounder challenged with VHSV did not transfer VHSV to naïve fish at 10℃ through cohabitation. VHSV titration was below the detection limit (< 1.3 log TCID50/mL) in live VHSV immersion vaccine-treated flounder challenged with VHSV at 10℃. This study demonstrated that flounder treated with the live VHSV immersion vaccine were resistant to VHSV infection, and the live vaccine was also safe for naïve fish even at a water temperature known to be VHS infectious.

키워드

과제정보

This work was supported by grants 2021R1A2C2007076 from the National Research Foundation (NRF) funded by the Ministry of Education, Science and Technology (MEST), Republic of Korea. The authors also acknowledge funding support from the Ministry of Ocean and Fisheries, Korea, as a part of the project titled 'Fish Vaccine Research Center' and 'Development of flounder SPF seed production technology'.

참고문헌

  1. Adams, A., 2019. Progress, challenges and opportunities in fish vaccine development. Fish & shellfish immunology, 90, pp.210-214. https://doi.org/10.1016/j.fsi.2019.04.066
  2. Hershberger, P.K., Purcell, M.K., Hart, L.M., Gregg, J.L., Thompson, R.L., Garver, K.A. and Winton, J.R., 2013. Influence of temperature on viral hemorrhagic septicemia (Genogroup IVa) in Pacific herring, Clupea pallasii Valenciennes. Journal of experimental marine biology and ecology, 444, pp.81-86. https://doi.org/10.1016/j.jembe.2013.03.006
  3. Hershberger, P.K., Purcell, M.K., Hart, L.M., Gregg, J. L., Thompson, R.L., Garver, K.A. and Winton, J.R., 2013. Influence of temperature on viral hemorrhagic septicemia (Genogroup IVa) in Pacific herring, Clupea pallasii Valenciennes. Journal of experimental marine biology and ecology, 444, pp.81-86. https://doi.org/10.1016/j.jembe.2013.03.006
  4. Hershberger, P.K., Gregg, J., Pacheco, C., Winton, J., Richard, J. and Traxler, G., 2007. Larval Pacific herring, Clupea pallasii (Valenciennes), are highly susceptible to viral haemorrhagic septicaemia and survivors are partially protected after their metamorphosis to juveniles. Journal of Fish Diseases, 30(8), pp.445-458. https://doi.org/10.1111/j.1365-2761.2007.00829.x
  5. Hershberger, P., Gregg, J., Grady, C., Collins, R. and Winton, J., 2010a. Kinetics of viral shedding provide insights into the epidemiology of viral hemorrhagic septicemia in Pacific herring. Marine Ecology Progress Series, 400, pp.187-193. https://doi.org/10.3354/meps08420
  6. Hershberger, P.K., Gregg, J.L., Grady, C.A., Collins, R. M. and Winton, J.R., 2010b. Susceptibility of three stocks of Pacific herring to viral hemorrhagic septicemia. Journal of Aquatic Animal Health, 22(1), pp.1-7. https://doi.org/10.1577/H09-026.1
  7. Hershberger, P.K., Gregg, J.L., Grady, C.A., LaPatra, S. E. and Winton, J.R., 2011. Passive immunization of Pacific herring against viral hemorrhagic septicemia. Journal of Aquatic Animal Health, 23(3), pp.140-147. https://doi.org/10.1080/08997659.2011.616838
  8. Kim, S.J., Kim, J.O., Kim, W.S. and Oh, M.J., 2016. Viral hemorrhagic septicemia virus (VHSV) infectivity dynamics in olive flounder, Paralichthys olivaceus with injection and immersion challenge routes. Aquaculture, 465, pp.7-12. https://doi.org/10.1016/j.aquaculture.2016.08.025
  9. Kim, S.J. and Oh, M.J., 2020. Potentiality to natural immunization inducement against VHS in olive flounder by live VHSV immersion vaccination at temperature controlled culture condition. Virus research, 288, p.198140.
  10. Kim, S.J., Qadiri, S.S.N. and Oh, M.J., 2019. Juvenile olive flounder immersed in live VHSV at 17℃ and 20℃ shows resistance against VHSV infection at 10℃. Virus research, 273, p.197738.
  11. Kim, W.S., Kim, S.R., Kim, D., Kim, J.O., Park, M.A., Kitamura, S.I., Kim, H.Y., Kim, D.H., Han, H.J., Jung, S.J. and Oh, M.J., 2009. An outbreak of VHSV (viral hemorrhagic septicemia virus) infection in farmed olive flounder Paralichthys olivaceus in Korea. Aquaculture, 296(1-2), pp.165-168. https://doi.org/10.1016/j.aquaculture.2009.07.019
  12. Kocan, R.M., Hershberger, P.K., Elder, N.E. and Winton, J.R., 2001. Epidemiology of viral hemorrhagic septicemia among juvenile Pacific herring and Pacific sand lances in Puget Sound, Washington. Journal of Aquatic Animal Health, 13(2), pp.77-85. https://doi.org/10.1577/1548-8667(2001)013<0077:EOVHSA>2.0.CO;2
  13. Nishizawa, T., Takami, I., Yang, M. and Oh, M.J., 2011.  Live vaccine of viral hemorrhagic septicemia virus (VHSV) for Japanese flounder at fish rearing temperature of 21 C instead of Poly (I: C) administration. Vaccine, 29(46), pp.8397-8404. https://doi.org/10.1016/j.vaccine.2011.08.032
  14. Nishizawa, T., Gye, H.J., Takami, I. and Oh, M.J., 2012. Potentiality of a live vaccine with nervous necrosis virus (NNV) for sevenband grouper Epinephelus septemfasciatus at a low rearing temperature. Vaccine, 30(6), pp.1056-1063. https://doi.org/10.1016/j.vaccine.2011.12.033
  15. Oh, S.Y., Oh, M.J. and Nishizawa, T., 2014. Potential for a live red seabream iridovirus (RSIV) vaccine in rock bream Oplegnathus fasciatus at a low rearing temperature. Vaccine, 32(3), pp.363-368. https://doi.org/10.1016/j.vaccine.2013.11.030
  16. Reed, L.J. and Muench, H., 1938. A simple method of estimating fifty per cent endpoints. American journal of epidemiology, 27(3), pp.493-497. https://doi.org/10.1093/oxfordjournals.aje.a118408
  17. Sano, M., Ito, T., Matsuyama, T., Nakayasu, C. and Kurita, J., 2009. Effect of water temperature shifting on mortality of Japanese flounder Paralichthys olivaceus experimentally infected with viral hemorrhagic septicemia virus. Aquaculture, 286(3-4), pp. 254-258. https://doi.org/10.1016/j.aquaculture.2008.09.031
  18. Wargo, A.R., Scott, R.J., Kerr, B. and Kurath, G., 2017. Replication and shedding kinetics of infectious hematopoietic necrosis virus in juvenile rainbow trout. Virus research, 227, pp.200-211. https://doi.org/10.1016/j.virusres.2016.10.011