• Title/Summary/Keyword: Vibration system

Search Result 7,884, Processing Time 0.036 seconds

Synthesis and characterizations of the non-swelling property micas by hydrothermal method (비팽윤성 운모의 수열합성 및 특성평가)

  • Park, Chun-Won;Park, Sun-Min;Kambayashi, Akira
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.3
    • /
    • pp.95-100
    • /
    • 2006
  • Synthesis of the non-swelling property micas was carried out by hydrothermal method. In order to artificially induce the diffusion of ions, a rotating system was attached to the hydrothermal apparatus and by adding 0.7 mm zircon beads, synthesis of the non-swelling property micas could be performed in a low temperature area. The hydrothermal conditions for the preparation of micas were a reaction temperature of $260^{\circ}C$, for 72 hrs, using $1K_2O,\;1Al(OH)_3,\;4Mg(OH)_2\;and\;6SiO_2$ as the starting materials and a 8M-KOH solution as the hydrothermal solvent. The micas obtained under these conditions were a plate shape with a size of $2.89{\mu}m$ and showed a whiteness of over 97 %. Also, through the FT-IR analysis, because the absorption peak of the $Mg_3OH$ vibration was observed at approximately $3700cm^{-1}$, it could be known that it was phlogopite of non-swelling property showing the chemical composition of $KMg_3AlSi_3O_{10}(OH)_2$. This result was very consistent with the EDS analysis where O (41.34 %), Mg (3.88 %), Al (11.45 %), Si (17.62 %) and K (25.71%) elements were detected.

Design and Implementation of Fuzzy-based Algorithm for Hand-shake State Detection and Error Compensation in Mobile OIS Motion Detector (모바일 OIS 움직임 검출부의 손떨림 상태 검출 및 오차 보상을 위한 퍼지기반 알고리즘의 설계 및 구현)

  • Lee, Seung-Kwon;Kong, Jin-Hyeung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.8
    • /
    • pp.29-39
    • /
    • 2015
  • This paper describes a design and implementation of fuzzy-based algorithm for hand-shake state detection and error compensation in the mobile optical image stabilization(OIS) motion detector. Since the gyro sensor output of the OIS motion detector includes inherent error signals, accurate error correction is required for prompt hand-shake error compensation and stable hand-shake state detection. In this research with a little computation overhead of fuzzy-based algorithm, the hand-shake error compensation could be improved by quickly reducing the angle and phase error for the hand-shake frequencies. Further, stability of the OIS system could be enhanced by the hand-shake states of {Halt, Little vibrate, Big vibrate, Pan/Tilt}, classified by subdividing the hand-shake angle. The performance and stability of the proposed algorithm in OIS motion detector is quantitatively and qualitatively evaluated with the emulated hand-shaking of ${\pm}0.5^{\circ}$, ${\pm}0.8^{\circ}$ vibration and 2~12Hz frequency. In experiments, the average error compensation gain of 3.71dB is achieved with respect to the conventional BACF/DCF algorithm; and the four hand-shake states are detected in a stable manner.

A Study on Enhancing Efficiency for Feeling-of-Hit in Games (게임의 타격감에 대한 효율 향상 연구)

  • Moon, Sung-Jun;Cho, Hyung-Je
    • Journal of Korea Game Society
    • /
    • v.12 no.2
    • /
    • pp.3-14
    • /
    • 2012
  • As one of elements to be able to endow more exciting and higher degree of completion for game, the feeling of hit is realized by image, sound and body-sensing (vibration) effects. When the feeling of hit is realized by game developer, most proper effects will be chosen with regard to genre, system and standpoint of world for the game. In general, most of choices for the effects are performed by the experience of game developer or referring the other games. Nevertheless the related studies are not significant in comparison with the importance for the feeling of hit, and the fundamental studies are mostly not accomplished. This paper introduces a study on efficiency and important factors for the feeling of hit by analyzing the properties and degrees of feeling for all effects to represent the feeling of hit through experiments. For this, a software simulator was implemented to test all effects and therewith the final results are presented through questionnaires for the feeling of hit sent to gamers. Our results are expected to be used to accomplish higher degree of completion for mobile games or web games with limited resources.

Structural Analysis of Power Transmission Mechanism of Electro-Mechanical Brake Device for High Speed Train (고속열차용 전기기계식 제동장치의 동력전달 기구물에 대한 구조해석)

  • Oh, Hyuck Keun;Beak, Seung-Koo;Jeon, Chang-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.237-246
    • /
    • 2019
  • The Electro-Mechanical Brake (EMB) is the next generation braking system for automobiles and railway vehicles. Current brake systems for high-speed trains generate a braking force using a pneumatic cylinder, but EMB systems produce that force through a combination of an electric motor and a gear. In this study, an EMB operation mechanism capable of generating a high braking force was proposed, and structural and vibration analyses of the gears and shafts, which are the core parts of the mechanisms, were performed. Dynamic structural analysis confirmed that the maximum stress in the analysis model was within the yield strength of the material. In addition, the design that maximizes the diameter of the motor shaft was found to be advantageous in strength, and large shear stress could be generated in the bolt fixing the gear and eccentric shaft. In addition, a test apparatus that can reproduce the mechanism of the analytical model was fabricated to measure the strain of the fixed bolt part, which is the most vulnerable part. The strain measurement results showed that the error between the analysis and measurement was within 10%, which could verify the accuracy of the analytical model.

A High Performance Flash Memory Solid State Disk (고성능 플래시 메모리 솔리드 스테이트 디스크)

  • Yoon, Jin-Hyuk;Nam, Eyee-Hyun;Seong, Yoon-Jae;Kim, Hong-Seok;Min, Sang-Lyul;Cho, Yoo-Kun
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.4
    • /
    • pp.378-388
    • /
    • 2008
  • Flash memory has been attracting attention as the next mass storage media for mobile computing systems such as notebook computers and UMPC(Ultra Mobile PC)s due to its low power consumption, high shock and vibration resistance, and small size. A storage system with flash memory excels in random read, sequential read, and sequential write. However, it comes short in random write because of flash memory's physical inability to overwrite data, unless first erased. To overcome this shortcoming, we propose an SSD(Solid State Disk) architecture with two novel features. First, we utilize non-volatile FRAM(Ferroelectric RAM) in conjunction with NAND flash memory, and produce a synergy of FRAM's fast access speed and ability to overwrite, and NAND flash memory's low and affordable price. Second, the architecture categorizes host write requests into small random writes and large sequential writes, and processes them with two different buffer management, optimized for each type of write request. This scheme has been implemented into an SSD prototype and evaluated with a standard PC environment benchmark. The result reveals that our architecture outperforms conventional HDD and other commercial SSDs by more than three times in the throughput for random access workloads.

Study on the Defect Improvement of Fuel Flow Proportioner Install Structure on Aircraft (항공기 연료흐름분배기 장착 구조물 결함개선 연구)

  • Choi, Hyoung Jun;Lee, Jin Won;Choi, Jae Ho;Park, Sung Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.558-567
    • /
    • 2020
  • This study examined the defect characteristics of fuel flow proportioner-mounted structures to analyze the causes of structural defects during aircraft operation. System vibrations and single component vibrations that occur during aircraft operations are usually the cause of structural defects. The fuel flow proportioner causes a defect in the support structure due to the vibration caused by the pressure change caused by the sudden increase in the flow rate. Defects in the support structure of the fuel flow proportioner are not correlated directly with the cracking of the maneuver, and flight time according to aircraft operation analysis is related to the use of A/B. The structural reinforcement configuration was confirmed through static and life analysis of the cracks of the bracket mounted under the fuel flow proportioner for improvement of the defect. An analysis of the reinforcement revealed a minimum structural strength of +0.15. Structural life analysis confirmed that the stress acted on the site under 15Ksi. The fatigue life was confirmed to be more than 7,700 Cycles.

Laboratory Validation of Bridge Finite Model Updating Approach By Static Load Input/Deflection Output Measurements (정적하중입력/변위출력관계를 이용한 단경간 교량의 유한요소모델개선기법: 실내실험검증)

  • Kim, Sehoon;Koo, Ki Young;Lee, Jong-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.3
    • /
    • pp.10-17
    • /
    • 2016
  • This paper presents a laboratory validation of a new approach for Finite Element Model Updating(FEMU) on short-span bridges by combining ambient vibration measurements with static load input-deflection output measurements. The conventional FEMU approach based on modal parameters requires the assumption on the system mass matrix for the eigen-value analysis. The proposed approach doesn't require the assumption and even provides a way to update the mass matrix. The proposed approach consists of two steps: 1) updating the stiffness matrix using the static input-deflection output measurements, and 2) updating the mass matrix using a few lower natural frequencies. For a validation of the proposed approach, Young's modulus of the laboratory model was updated by the proposed approach and compared with the value obtained from strain-stress tests in a Universal Testing Machine. Result of the conventional FEMU was also compared with the result of the proposed approach. It was found that proposed approach successfully estimated the Young's modulus and the mass density reasonably while the conventional FEMU showed a large error when used with higher-modes. In addition, the FE modeling error was discussed.

Design, Implementation and Test of Flight Model of S-Band Transmitter for STSAT-3 (과학기술위성 3호 S-대역 송신기 비행모델 설계, 제작 및 시험)

  • Oh, Seung-Han;Seo, Gyu-Jae;Lee, Jung-Soo;Oh, Chi-Wook;Park, Hong-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.6
    • /
    • pp.553-558
    • /
    • 2011
  • This paper describes the development and test result of S-band Transmitter flight model(FM) of STSAT-3 by satellite research center(SaTReC), KAIST. The communication sub-system of STSAT-3 is consist of two different frequency band channels, S-band for Telemetry & Command and X-band for mission data. S-band Transmitter(STX) functionally made of modulator, frequency synthesizer, power amp and DC/DC converter. The transmission data is modulated by FSK(Frequency Shift Keying) and the interface between spacecraft sub-module and STX is RS-422 standard method. The FM STX is based on modular design. The RF output power of STX is 1.5W(31.7dBm) and BER of STX is under $1{\times}10^{-5}$ which meets the specification respectively. The FM STX is delivered Spacecraft Assembly, Integration and Test(AIT) level through the completion of functional Test and environmental(vibration, thermal vacuum) Test successfully.

Field Measurements and Review of the Curve Squeal Noise of Urban Railways (도시철도 차량 주행시 곡선스킬소음 실험 및 고찰)

  • Kim, Jae-chul;Kim, Kwanju;Lee, Junheon;Kim, Jiyong
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.2
    • /
    • pp.165-172
    • /
    • 2017
  • High frequency squeal noise can be generated when a railroad vehicle runs a sharp curved section; this noise causes environmental complaints and excessive wear on the wheel and the railroad track. In this paper, curved squeal noise experiments on a commercial railway were carried out to investigate this phenomenon. The relationship of the squeal noise pressure level, the frequency characteristics, the railway running speed, and the modal behavior of the wheel were investigated. At the same time, the lateral motion of the wheel relative to the rail was captured using a video camera; wheel movement was calculated when the noise was generated. queal noise occurred at the highest level at the inner front wheel; this phenomena is considered to be related to the lateral vibration response characteristics of the wheel. It can be seen that the magnitude of this squeal noise is not directly related to the increase in vehicle speed.

A Study on The Major Environmental Effecting Factors for The Selection Environment-Friendly Railway Corridor (환경 친화적 철도노선대 선정을 위한 주요환경 영향인자에 관한 연구)

  • Kim, Dong-Ki
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.2
    • /
    • pp.132-138
    • /
    • 2009
  • The energy efficiency and environment-friendly aspect of the railway system would be superior to other on-land transportation systems. In a preliminary feasibility study stage and selection of optimal railway corridor, the energy efficiency and problems related to environment are usually not considered. For the selection of optimal railway corridor, geographical features and facility of management are generally considered. Environment effect factors for the selection of environment-friendly railway corridor are focused and studied in this paper. In this study, various analysis of opinion of specialists (railway, environment, transport, urban planning, survey) and the guideline for construction of environment-friendly railway were accomplished. From these results of various analysis, 7 major categories (topography/geology, flora and fauna, Nature Property, air quality, water quality, noise/vibration, visual impact/cultural assets) were extracted. To select environment friendly railway corridors, many alternatives should be compared optimal corridor must be selected by a comprehensive assessment considering these 7 categories. The investment for railway systems can be encouraged by the considering of main environmental effect factor evaluated with the modified environmental weight factors for environment-friendly railway construction.