• Title/Summary/Keyword: Vibration of Rotating

Search Result 964, Processing Time 0.023 seconds

Rotating Shaft Vibration Analysis of 200 kW, 15,000 rpm 3 Phase Induction Motor (200 kW급 15,000 rpm 3상 유도전동기의 회전축 진동해석)

  • Hong, D.K.;Koo, D.H.;Woo, B.C.;Hong, S.S.;Kwon, Y.S.;Kang, H.C.;Ahn, C.W.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.262-265
    • /
    • 2006
  • The purpose of this study is to design 200 kW, 15,000 rpm 3 phase induction motor. This research deals with natural frequency and mode shape of rotating shaft of 3 phase induction motor with bearing stiffness by finite element analysis. We present natural frequency characteristic variation of rotating shaft according to change bearing stiffness. Also we are verified stability of rotating shaft from backward and forward critical speed by campbell diagram.

  • PDF

Study on the Stress Distribution of a Rotating Cantilever Beam in Transient Vibration (회전 외팔보의 과도상태 진동시 발생하는 응력분포 연구)

  • 최창민;유홍희;양현익
    • Journal of KSNVE
    • /
    • v.10 no.2
    • /
    • pp.306-311
    • /
    • 2000
  • The stress distribution of a rotating cantilever beam in transient vibration is investigated in this paper. The equations of motion of the rotating bean are derived and numerical results are obtained. The tensile and bending stresses which occur when the beam rotates with the tuned angular speed or passes through the tuned angular speed are obtained. Since those stresses are usually significant during the rotational motion, it is important to estimate them accurately in the design of the rotating structure.

  • PDF

Dynamic Load Suppression in Active Vibration Control of Rotating Machinery (회전 물체의 동적 하중에 대한 능동 진동 제어)

  • 김주형;김상섭
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1126-1131
    • /
    • 2001
  • Excessive vibration in rotating machinery is a problem encountered in many different fields, causing such difficulties as fatigue of machinery components and failure of supporting bearings. Passive techniques, though sometimes limited in their capabilities, have been used in the past to attenuated vibrations. Recently active techniques have been developed to provide vibration control perform beyond that provided by their passive counters. Most often, the focus of active control methods has been to suppress rotating machinery displacements. In cases where vibration results in bearing failures, displacement suppression may not be the best choice of control approaches (it can, in fact, increase dynamic bearing loads which would be even more harmful to bearings). This paper presents two optimal control methods for attenuating steady state vibrations in rotating machinery. One method minimizes shaft displacements while the other minimizes dynamic bearing reaction forces. The two methods are applied to a model of a typical rotating machinery system and their results are compared. It is found that displacement minimization can increase bearing loads, while bearing load minimization, on the other hand, decreases bearing loads.

  • PDF

Vibration Analysis of a Rotating Cantilever Beam Having Tapered Cross Section (테이퍼진 단면을 가진 회전 외팔보의 진동해석)

  • Yoo, Hong-Hee;Lee, Jun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.348-353
    • /
    • 2008
  • A vibration analysis for a rotating cantilever beam with the tapered cross section is presented in this study. The stiffness changes due to the stretching caused by centrifugal inertia forces when a tapered cantilever beam rotates about the axis perpendicular to its longitudinal axis. When the cross section of cantilever beam are assumed to decrease constantly, the mass and stiffness also change according to the variation of the thickness and width ratio of a tapered cantilever beam. Such phenomena result in variations of natural frequencies and mode shapes. Therefore it is important to the equations of motion in order to be obtained accurate predictions of these variations. The equations of motion of a rotating tapered cantilever beam are derived by using hybrid deformation variable modeling method and numerical results are obtained along with the angular velocity and the thickness and width ratio.

  • PDF

Vibration Analysis of a Rotating Cantilever Beam Having Tapered Cross Section (테이퍼진 단면을 가진 회전 외팔보의 진동해석)

  • Lee, Jun-Hee;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.4
    • /
    • pp.363-369
    • /
    • 2009
  • A vibration analysis for a rotating cantilever beam with the tapered cross section is presented in this study. The stiffness changes due to the stretching caused by centrifugal inertia forces when a tapered cantilever beam rotates about the axis perpendicular to its longitudinal axis. When the cross section of cantilever beam are assumed to decrease constantly, the mass and stiffness also change according to the variation of the thickness and width ratio of a tapered cantilever beam. Such phenomena result in variations of natural frequencies and mode shapes. Therefore it is important to the equations of motion in order to be obtained accurate predictions of these variations. The equations of motion of a rotating tapered cantilever beam are derived by using hybrid deformation variable modeling method and numerical results are obtained along with the angular velocity and the thickness and width ratio.

Thermal Effect on the Vibration Characteristics of Twisted Rotating Blade (비틀림이 있는 회전블레이드의 열 효과를 고려한 진동 특성)

  • Kee, Young-Jung;Kim, Ji-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.380.1-380
    • /
    • 2002
  • Vibration analysis of rotating blade is the main purpose of present study. In this work, general formulation is proposed to analyze rotating shell type structures including the centrifugal force, Coriolis acceleration and initial twist. Futhermore, simplified equations are derived for the case of an open circular cylindrical shell. Based on the concept of degenerated shell element with the Reissner-Mindlin's assumptions, the finite element method is adopted for solving the governing equations. (onitted)

  • PDF

Vibration Analysis of Rotating Blades with the Cross Section Taper Considering the Pre-twist Angle and the Setting Angle (초기 비틀림각 및 장착 각의 영향을 고려한 단면 테이퍼진 회전 블레이드의 진동해석)

  • Lee, Jun-Hee;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.1
    • /
    • pp.10-21
    • /
    • 2010
  • Equations of chordwise and flapwise bending motions for the vibration analysis of rotating pre-twisted blades having tapered cross section and setting angle are derived by using hybrid deformation variable modeling. The two motions are couples to each other due to the pre-twisted angle of the beam cross section. The derived equations are transformed into dimensionless forms in which dimensionless parameters are identified. The effects of the dimensionless parameters on the modal characteristics of rotating pre-twisted blades having tapered cross section and orientation angle are investigated. The eigenvalue loci veering phenomena are also investigated and discussed in this work.

Vibration analysis of rotating blades considering the cross section taper, the pre-twist angle, and the setting angle (단면 테이퍼, 초기 비틀림각, 그리고 장착 각의 영향을 고려한 회전 블레이드의 진동해석)

  • Lee, Jun-Hee;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.288-295
    • /
    • 2009
  • Equations of chordwise and flapwise bending motions for the vibration analysis of rotating pre-twisted blades having tapered cross section and orientation angle are derived by using hybrid deformation variable modeling. The two motions are couples to each other due to the pre-twisted angle of the beam cross section. The derived equations are transformed into dimensionless forms in which dimensionless parameters are identified. The effects of the dimensionless parameters on the modal characteristics of rotating pre-twisted blades having tapered cross section and orientation angle are investigated. The eigenvalue loci veering phenomena is also investigated and discussed in this work.

  • PDF

Vibration Analysis of Rotating Cantilever Beams Considering the Elastic Foundation Effect (지지부 탄성효과를 고려한 회전 외팔 보의 진동해석)

  • 윤경재;유홍희
    • Journal of KSNVE
    • /
    • v.10 no.6
    • /
    • pp.1022-1028
    • /
    • 2000
  • This paper presents a modeling method for the vibration analysis of rotating cantilever beams considering the elastic foundation effect. Mass and stiffness matrices are derided explicitly by considering coupling effect between stretching and bonding motion. Numerical results show that the bending direction elastic foundation stiffness influences the vibration characteristics significantly in practical range of beam configuration. The ranges of elastic foundation stiffness to avoid the dynamic buckling are also presented. The method presented in this paper can be used to predict the variations of natural frequencies of rotating cantilever beams with elastically restrained root.

  • PDF

The Study on the Correlation of Vibration, Wear and Temperature for Rubbing in Rotating Machinery (마멸현상에서 발생하는 회전기 시스템의 진동.마모.온도의 상관 관계 연구)

  • 백두진;김승종;윤의성;김창호;공호성;장건희;이용복
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.453-459
    • /
    • 2002
  • In this paper. the correlation among vibration. wear and temperature are experimentally investigated when rubbing is caused by static and dynamic forces. Each measurement reflects the characteristics of the system and is useful in detecting and diagnosing the current status of rotating machinery. For experiment, the rotor system with lubricating equipment such as trochoid pump, oil tank and wear detecting sensor is implemented to simulate the rubbing condition. Experimental results show that significant change in wear quantity can be notified when vibration signal is changed by rubbing. The results can be applied to system monitoring and fault diagnosis in rotating machinery.

  • PDF