• Title/Summary/Keyword: Vertical hall sensor

Search Result 18, Processing Time 0.023 seconds

Fabrication of vertical Hall sensor for detecting three phases magnetic field (3상의 자계 검출을 위한 수직 Hall 센서의 제작)

  • Lee, Ji-Yeon;Nam, Tae-Chul
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.85-90
    • /
    • 2005
  • In this study, we have fabricated a three branches vertical Hall sensor for detecting three phases rotation informations of miniaturized brushless motor. The sensor gives three position signals phase shifted by $120^{\circ}$, corresponding to the motor driving signals. The branch has one Hall output and one input each other. The central part acts as common driving input. Sensor has branch width of $150{\mu}m$ and distance from central electrode to Hall electrode of $100{\mu}m$. The sensitivity of sensor is 250 V/$A{\cdot}T$ at magnetic field of 0.1 T. It has also showed three sine waves of Hall voltages with $120^{\circ}$ phase over a $360^{\circ}$ rotation. A packaged sensing part are $2{\times}2mm^{2}$ and has been successfully tested on a motor rotation at a speed up to 60,000 rpm.

Sensitivity Enhancement of a Vertical-Type CMOS Hall Device for a Magnetic Sensor

  • Oh, Sein;Jang, Byung-Jun;Chae, Hyungil
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.1
    • /
    • pp.35-40
    • /
    • 2018
  • This study presents a vertical-type CMOS Hall device with improved sensitivity to detect a 3D magnetic field in various types of sensors or communication devices. To improve sensitivity, trenches are implanted next to the current input terminal, so that the Hall current becomes maximum. The effect of the dimension and location of trenches on sensitivity is simulated in the COMSOL simulator. A vertical-type Hall device with a width of $16{\mu}m$ and a height of $2{\mu}m$ is optimized for maximum sensitivity. The simulation result shows that it has a 23% better result than a conventional vertical-type CMOS Hall device without a trench.

Magnetic Sensitivity Improvement of 2-Dimensional Silicon Vertical Hall Device (2 차원 Si 종형 Hall 소자의 자기감도 개선)

  • Ryu, Ji-Goo
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.392-396
    • /
    • 2014
  • The 2-dimensional silicon vertical Hall devices, which are sensitive to X,Y components of the magnetic field parallel to the surface of the chip, are fabricated using a modified bipolar process. It consists of the thin p-layer at Si-$SiO_2$ interface and n-epi layer to improve the sensitivity and influence of interface effect. Experimental samples are a sensor type K with and type J without $p^+$ isolation dam adjacent to the center current electrode. The results for both type show a more high sensitivity than the former's 2-dimensional vertical Hall devices and a good linearity. The measured non-linearity is about 0.8%. The sensitivity of type J and type K are about 66 V/AT and 200 V/AT, respectively. This sensor's behavior can be explained by the similar J-FET model.

Magnetic Sensitivity Improvement of Silicon Vertical Hall Device (Si 종형 Hall 소자의 자기감도 개선)

  • Ryu, Ji-Goo;Kim, Nam-Ho;Chung, Su-Tae
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.260-265
    • /
    • 2011
  • The silicon vertical hall devices are fabricated using a modified bipolar process. It consists of the thin p-layer at Si-$SiO_2$, interface and n-epi layer without $n^+$buried layer to improve the sensitivity and influence of interface effects. Experimental samples are a sensor type I with and type H without p+isolation dam adjacent to the center current electrode. The experimental results for both type show a more high current-related sensitivity than the former's vertical hall devices. The sensitivity of type H and type I are about 150 V/AT and 340 V/AT, respectively. This sensor's behavior can be explained by the similar J-FET model.

Three Branches Vertical Hall Sensor for Rotation Angle Detection (회전각 검출용 3축 수직 Hall 센서)

  • Lee, Ji-Yeon;Nam, Tae-Chul
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.9
    • /
    • pp.840-845
    • /
    • 2005
  • A three branches vortical Hall sensor for detecting rotation angle of brushless motor has fabricated. The sensor is constructed three branches of $150{\mu}m$ width and $300{\mu}m$ distance from central electrode to Hall electrode. Each branch has one Hall output and one Hall input. The central electrode acts as common driving input. According to rotation angle change of brushless motor, sensor gives three position signals phase shifted by $120^{\circ}$. The sensitivity of sensor is 200V/A$\cdot$T at magnetic field of 0.1 T and constant driving current of 1mA. It has also showed three sine waves of Hall output voltages with $120^{\circ}$ phase over one motor rotation. The noise can limit sensor's resolution. We have measured sensor's noise characteristics. The detectable minimum magnetic field is $20{\mu}T$ at driving current 1mA, measured frequency 1 kHz and bandwidth$({\Delta}f)$ of 1Hz.

Characteristic Analysis of The Vertical Trench Hall Sensor using SOI Structure (SOI 구조를 이용한 수직 Hall 센서에 대한 특성 연구)

  • 이지연;박병휘
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.4
    • /
    • pp.25-29
    • /
    • 2002
  • We have fabricated a vertical trench Hall device which is sensitive to the magnetic field parallel to the sensor surface. The vertical trench Hall device has been built on SOI wafer which is produced by silicon direct bonding technology using bulk micromachining, where buried $SiO_2$ layer and surround trench define active device volume. Sensitivity up to 150 V/AT has been measured.

  • PDF

Fabrication and Characterization of the Silicon Vertical Hall Devices (실리콘 종형 홀 소자의 제조 및 그 특성)

  • 류지구;최세곤
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.3
    • /
    • pp.72-78
    • /
    • 1992
  • The Silicon vertical Hall devices are fabricated using standard bipolar process and characterized in terms of the Hall voltage, sensitivities, and offset voltage. The Hall voltage and sensitivity of the devices showed good linearity with respect to the magnetic flux density and reverse supply voltage Vr. The sensitivity of device with P$^{+}$ isolation dam has been increased up to 1.2 times compared to that of device without the dam. With the condition of V$_{r}$=-5.0[V], B=0.4[T] and I$_{sup}$=1.0[mA], the Hall voltage and sensitivity of the device with P$^{+}$ isolation dam were about 29[mV] and 74[V/AT], respectively. These vertical Hall devices can be used as the adjustable magnetic fields sensor.

  • PDF

The Vertical Trench Hall-Effect Device Using SOI Wafer (SOI Wafer를 사용한 트렌치 구조의 수직 Hall 소자의 제작)

  • Park, Byung-Hwee;Jung, Woo-Chul;Nam, Tae-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.2023-2025
    • /
    • 2002
  • We have fabricated a novel vertical trench-Hall device sensitive to the magnetic field parallel to the sensor chip surface. The vertical trench-Hall device is built on SOI wafer which is produced by silicon direct bonding technology using bulk micromachining, where buried $SiO_2$ layer and surround trench define active device volume. Sensitivity up to 350 V/AT is measured.

  • PDF

The Fabrications of Vertical Trench Hall-Effect Device for Non-contact Angular Position Sensing Applications (비 접촉 각도 센서 응용을 위한 수직 Hall 소자의 제작)

  • Park, Byung-Hwee;Jung, Woo-Chul;Nam, Tae-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.251-253
    • /
    • 2002
  • We have fabricated a novel Vertical Trench Hall-Effect Device sensitive to the magnetic field parallel to the sensor chip surface for non-contact angular position sensing applications. The Vertical Trench Hall-Effect Device is built on SOI wafer which is produced by silicon direct bonding technology using bulk micromachining, where buried $SiO_2$ layer and surround trench define active device volume. Sensitivity up to 150 V/AT is measured.

  • PDF

Magnet Position Sensor System using Hall Sensors (홀센서를 이용한 자석의 위치인식 센서 개발)

  • Kim, Eun-Ju;Kim, Eui-Sun;Lim, Young-Cheol
    • Journal of Korea Entertainment Industry Association
    • /
    • v.5 no.2
    • /
    • pp.166-172
    • /
    • 2011
  • This paper presents a sensor system which recognizes the location of a magnet using cheap hall sensor. The proposed methods measure magnetic field from a magnet using model equation, analyze the property of horizontal and vertical magnetic field, and decide the method of sensor arrangement. And, this paper proposes the algorithm which infers the location of a magnet from the measured magnetic field that relates the position between the magnet and the hall sensor, and calculate theoretical error, which is found to be no more than 0.0025cm. The results actually measured show that the measured error no more than 0.07cm and confirm that proposed systems are highly applicable to the various situations.