• Title/Summary/Keyword: Variational inequality

Search Result 192, Processing Time 0.025 seconds

On the browder-hartman-stampacchia variational inequality

  • Chang, S.S.;Ha, K.S.;Cho, Y.J.;Zhang, C.J.
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.493-507
    • /
    • 1995
  • The Hartman-Stampacchia variational inequality was first suggested and studied by Hartman and Stampacchia [8] in finite dimensional spaces during the time establishing the base of variational inequality theory in 1960s [4]. Then it was generalized by Lions et al. [6], [9], [10], Browder [3] and others to the case of infinite dimensional inequality [3], [9], [10], and the results concerning this variational inequality have been applied to many important problems, i.e., mechanics, control theory, game theory, differential equations, optimizations, mathematical economics [1], [2], [6], [9], [10]. Recently, the Browder-Hartman-Stampaccnia variational inequality was extended to the case of set-valued monotone mappings in reflexive Banach sapces by Shih-Tan [11] and Chang [5], and under different conditions, they proved some existence theorems of solutions of this variational inequality.

  • PDF

GENERAL NONCONVEX SPLIT VARIATIONAL INEQUALITY PROBLEMS

  • Kim, Jong Kyu;Salahuddin, Salahuddin;Lim, Won Hee
    • Korean Journal of Mathematics
    • /
    • v.25 no.4
    • /
    • pp.469-481
    • /
    • 2017
  • In this paper, we established a general nonconvex split variational inequality problem, this is, an extension of general convex split variational inequality problems in two different Hilbert spaces. By using the concepts of prox-regularity, we proved the convergence of the iterative schemes for the general nonconvex split variational inequality problems. Further, we also discussed the iterative method for the general convex split variational inequality problems.

APPROXIMATION OF SOLUTIONS OF A GENERALIZED VARIATIONAL INEQUALITY PROBLEM BASED ON ITERATIVE METHODS

  • Cho, Sun-Young
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.2
    • /
    • pp.207-214
    • /
    • 2010
  • In this paper, a generalized variational inequality problem is considered. An iterative method is studied for approximating a solution of the generalized variational inequality problem. Strong convergence theorem are established in a real Hilbert space.

MIXED QUASI VARIATIONAL INEQUALITIES INVOLVING FOUR NONLINEAR OPERATORS

  • Pervez, Amjad;Khan, Awais Gul;Noor, Muhammad Aslam;Noor, Khalida Inayat
    • Honam Mathematical Journal
    • /
    • v.42 no.1
    • /
    • pp.17-35
    • /
    • 2020
  • In this paper we introduce and consider a new class of variational inequalities with four operators. This class is called the extended general mixed quasi variational inequality. We show that the extended general mixed quasi variational inequality is equivalent to the fixed point problem. We use this alternative equivalent formulation to discuss the existence of a solution of extended general mixed quasi variational inequality and also develop several iterative methods for solving extended general mixed quasi variational inequality and its variant forms. We consider the convergence analysis of the proposed iterative methods under appropriate conditions. We also introduce a new class of resolvent equation, which is called the extended general implicit resolvent equation and establish an equivalent relation between the extended general implicit resolvent equation and the extended general mixed quasi variational inequality. Some special cases are also discussed.

REMARKS ON SOME VARIATIONAL INEQUALITIES

  • Park, Sehie
    • Bulletin of the Korean Mathematical Society
    • /
    • v.28 no.2
    • /
    • pp.163-174
    • /
    • 1991
  • This is a continuation of the author's previous work [17]. In this paper, we consider mainly variational inequalities for single-valued functions. We first obtain a generalization of the variational type inequality of Juberg and Karamardian [10] and apply it to obtain strengthened versions of the Hartman-Stampacchia inequality and the Brouwer fixed point theorem. Next, we obtain fairly general versions of Browder's variational inequality [5] and its subsequent generalizations due to Brezis et al [4], Takahashk [23], Shih and Tan [19], Simons [20], and others. Finally, in this paper, we obtain a variational inequality for non-real locally convex t.v.s. which generalizes a result of Shih and Tan [19].

  • PDF

EXISTENCE RESULTS FOR VECTOR NONLINEAR INEQUALITIES

  • Lee, Suk-Jin;Lee, Byung-Soo
    • Communications of the Korean Mathematical Society
    • /
    • v.18 no.4
    • /
    • pp.737-743
    • /
    • 2003
  • The purpose of this paper is to consider some existence results for vector nonlinear inequalities without any monotonicity assumption. As consequences of our main result, we give some existence results for vector equilibrium problem, vector variational-like inequality problem and vector variational inequality problems as special cases.

GENERALIZED VECTOR MINTY'S LEMMA

  • Lee, Byung-Soo
    • The Pure and Applied Mathematics
    • /
    • v.19 no.3
    • /
    • pp.281-288
    • /
    • 2012
  • In this paper, the author defines a new generalized ${\eta}$, ${\delta}$, ${\alpha}$)-pseudomonotone mapping and considers the equivalence of Stampacchia-type vector variational-like inequality problems and Minty-type vector variational-like inequality problems for generalized (${\eta}$, ${\delta}$, ${\alpha}$)-pseudomonotone mappings in Banach spaces, called the generalized vector Minty's lemma.

APPROXIMATE PROJECTION ALGORITHMS FOR SOLVING EQUILIBRIUM AND MULTIVALUED VARIATIONAL INEQUALITY PROBLEMS IN HILBERT SPACE

  • Khoa, Nguyen Minh;Thang, Tran Van
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.4
    • /
    • pp.1019-1044
    • /
    • 2022
  • In this paper, we propose new algorithms for solving equilibrium and multivalued variational inequality problems in a real Hilbert space. The first algorithm for equilibrium problems uses only one approximate projection at each iteration to generate an iteration sequence converging strongly to a solution of the problem underlining the bifunction is pseudomonotone. On the basis of the proposed algorithm for the equilibrium problems, we introduce a new algorithm for solving multivalued variational inequality problems. Some fundamental experiments are given to illustrate our algorithms as well as to compare them with other algorithms.

ON STUDY OF f-APPROXIMATION PROBLEMS AND σ-INVOLUTORY VARIATIONAL INEQUALITY PROBLEMS

  • Mitra, Siddharth;Das, Prasanta Kumar
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.2
    • /
    • pp.223-232
    • /
    • 2022
  • The purpose of the paper is to define f-projection operator to develop the f-projection method. The existence of a variational inequality problem is studied using fixed point theorem which establishes the existence of f-projection method. The concept of ρ-projective operator and σ-involutory operator are defined with suitable examples. The relation in between ρ-projective operator and σ-involutory operator are shown. The concept of σ-involutory variational inequality problem is defined and its existence theorem is also established.