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A CHARACTERIZATION OF SOLUTIONS OF AFFINE
VARIATIONAL INEQUALITY DEFINED BY

SECOND-ORDER CONE

Sangho Kum*

Abstract. A variational inequality defined by the second-order
cone is considered, and it is shown that a necessary and sufficient
condition for a solution of the variational inequality holds under
some regularity condition.

1. Introduction and preliminaries

Recently, many authors have studied optimization problems over
second-order cones and their applications to nonlinear optimization prob-
lems [1, 2, 6]. Such investigation has a strong motivation since many
nonlinear optimization problems can be relaxed to optimization prob-
lems over second-order cones. It is well-known that variational inequal-
ity problems are closely related to optimization problems. Very recently,
Auslender [3] studied algorithms for variational inequalities over the cone
of semidefinite positive symmetric matrices and over the second-order
cone.

The purpose of this paper is to give a complete characterization of
solutions for a variational inequality problem defined by the second-order
cone. We prove that a necessary and sufficient condition for a solution
of the variational inequality holds under some regularity condition. We
recall in this section some notations and basic results which will be used
in next section.

Received August 6, 2007.
2000 Mathematics Subject Classification: 47J20, 65K10.
Key words and phrases: variational inequality, second-order cone, regularity

condition.
This work was supported by the research grant of the Chungbuk National Uni-

versity in 2006.



328 Sangho Kum

For a subset D ⊂ Rn, the closure of D will be denoted by clD and
the convex hull of D by coD. Let h : Rn → R ∪ {+∞} be a proper,
lower semi-continuous convex function. The conjugate function of h,
h∗ : Rn → R ∪ {+∞}, is defined by

f∗(v) := sup{v(x)− h(x) | x ∈ dom h},
where dom h := {x ∈ Rn | h(x) < +∞} is the effective domain of h.
The epigraph of h is defined by

epi h := {(x, r) ∈ Rn × R | x ∈ dom h, h(x) ≤ r}.
The set (possibly empty)

∂h(a) := {v ∈ Rn | h(x)− h(a) ≥ v(x− a),∀x ∈ dom h}
is the subdifferential of the convex function h at a ∈ dom h. For a closed
convex subset D of Rn, the indicator function δD is defined as δD(x) = 0
if x ∈ D and δD(x) = +∞ if x /∈ D. Then ∂δD(x) = ND(x), which is
known as the normal cone of D of x.

For a proper lower semicontinuous convex functions g : Rn → R ∪
{+∞}, the lower semicontinuous convex hull of g is denoted by cl cog.
That is, epi(cl cog) = cl co(epi g). For details, see [7]. Let gi, i ∈
I (where I is an arbitrary index set) be proper lower semicontinuous
convex functions. It is well known (see [7]) that if supi∈Igi is proper,
then (

sup
i∈I

gi

)∗
= cl co

(
inf
i∈I

g∗i

)
.

Thus we can check that

(1.1) epi
(

sup
i∈I

gi

)∗
= cl co

(⋃

i∈I

epig∗i

)
.

2. A characterization of solutions

In this section, we introduce a variational inequality defined by the
second-order cone, and then we prove that a necessary and sufficient
condition for a point to be a solution of the inequality holds under a
regularity condition. The condition gives a complete characterization of
solutions of Aff(VI).

Let Q := {x ∈ Rn | ‖Hx + b‖ ≤ ctx + d }, where H is an (m −
1) × n matrix, b ∈ Rm−1, c ∈ Rn, d ∈ R and ‖z‖ =

√
ztz, z ∈ Rm−1.

Suppose that Q 6= ∅. Let K = {(y, t)t ∈ Rm−1 × R | ‖y‖ ≤ t }, that
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is, K is a second-order cone in Rm. Then K is self-dual, that is, K =
{z ∈ Rm | ktz ≥ 0 ∀z ∈ K}. Consider the following affine variational
inequality defined by the second-order cone K.

Aff(VI) : Find x̄ ∈ Q such that 〈Mx̄, x− x̄〉 ≥ 0 ∀x ∈ Q,

where M ∈ Rn×n is a given matrix. Note that

(2.1) x ∈ Q ⇔
(

Hx + b
ctx + d

)
∈ K.

Thus Aff(VI) is a variational inequality defined by the second-order cone
K. We begin with the following lemma.

Lemma 2.1. Let x̄ ∈ Q. Then we have the following:

u ∈ NQ(x̄) ⇐⇒ (u, utx̄) ∈ cl
[ ⋃

λ∈K

{(
−

(
H
ct

)t

λ,

(
b
d

)t

λ

)}
+{0}×R+

]
.

Proof. Let g(x) = −
(

Hx + b
ctx + d

)
. For any λ ∈ K, we get

(λtg)∗(v) = sup{vtx− λtg(x) | x ∈ Rn}

= sup

{[
v +

(
H
ct

)t

λ
]t

x
∣∣∣ x ∈ Rn

}
+

(
b
d

)t

λ

=





(
b

d

)t

λ if v = −
(

H

ct

)t

λ

+∞ if v 6= −
(

H

ct

)t

λ,

and hence

epi(λtg)∗ =

{(
−

(
H
ct

)t

λ,

(
b
d

)t

λ + r

) ∣∣∣ r ≥ 0

}

=

(
−

(
H
ct

)t

λ,

(
b
d

)t

λ

)
+ {0} × R+.

Thus we have

⋃

λ∈K

epi(λtg)∗ =
⋃

λ∈K

{(
−

(
H
ct

)t

λ,

(
b
d

)t

λ

)}
+ {0} × R+.
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Since x̄ ∈ Q, we see

u ∈ NQ(x̄) ⇐⇒ ut(x− x̄) ≤ 0 ∀x ∈ Q

⇐⇒ sup
x∈Q

utx = utx̄

⇐⇒ δ∗Q(u) = utx̄

⇐⇒ (u, utx̄) ∈ epi δ∗Q.

As δQ(x) = sup
λ∈K

λtg(x) and
⋃

λ∈K

epi(λtg)∗ is convex [4], it follows from

(1.1) that

epi δ∗Q = cl co
[ ⋃

λ∈K

epi(λtg)∗
]

= cl
[ ⋃

λ∈K

epi(λtg)∗
]
.

This completes the proof.

Now we present the main result of this note.

Theorem 2.2. Assume that
⋃

λ∈K

{(
−

(
H
ct

)t

λ,

(
b
d

)t

λ

)}
+{0}×

R+ is closed. Then x̄ ∈ Rn is a solution of Aff(VI) if and only if(
Hx̄ + b
ctx̄ + d

)
∈ K, and there exists λ ∈ K such that

Mx̄ =
(

H
ct

)t

λ and λt

(
Hx̄ + b
ctx̄ + d

)
= 0.

Proof. Let us denote by sol(Aff(VI)) the solution set of Aff(VI). Then
we have the following equivalences:

x̄ ∈ sol (Aff(VI)) ⇐⇒ x̄ ∈ Q and −Mx̄ ∈ NQ(x̄)
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⇐⇒ x̄ ∈ Q and
[
∃λ ∈ K and ∃α ≥ 0 satisfying

(−Mx̄,−x̄tM tx̄) =

(
−

(
H
ct

)t

λ,

(
b
d

)t

λ + α

)

i.e., −Mx̄ = −
(

H
ct

)t

λ, −x̄tM tx̄ =
(

b
d

)t

λ + α
]

⇐⇒
(

Hx̄ + b
ctx̄ + d

)
∈ K and

[
∃λ ∈ K and ∃α ≥ 0 such that

Mx̄ =
(

H
ct

)t

λ and − λt

(
Hx̄ + b
ctx̄ + d

)
= α

]

⇐⇒
(

Hx̄ + b
ctx̄ + d

)
∈ K and

[
∃λ ∈ K such that

Mx̄ =
(

H
ct

)t

λ and λt

(
Hx̄ + b
ctx̄ + d

)
= 0.

]

The second and third equivalences come from Lemma 2.1 and (2.1),
respectively. This completes the proof.
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