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REMARKS ON SOME VARIATIONAL INEQUALITIES

SEHIE PARK

1. Introduction and Preliminaries

This is a continuation of the author’s previous work [17]. In this pa-
per, we consider mainly variational inequalities for single-valued func-
tions.

We first obtain a generalization of the variational type inequality
of Juberg and Karamardian [10] and apply it to obtain strengthened
versions of the Hartman-Stampacchia inequality and the Brouwer fixed
point theorem. Next, we obtain fairly general versions of Browder’s
variational inequality [5] and its subsequent generalizations due to Brezis
et al. [4], Takahashi (23], Shih and Tan [19], Simons [20], and others.
Finally, in this paper, we obtain a variational inequality for non-real
locally convex t.v.s. which generalizes a result of Shih and Tan [19].

For terminology and notations, we follow [17]. For a subset X of
a vector space E and z € E, the inward and outward sets of X at z,
Ix(z) and Og(z), are defined as follows:

Ix(z)={z+r(u—z)€EE:ue X, r>0},
Ox(z)={z—-r(u—z)€E:ue X, r>0}

We begin with the following form of [17, Theorem 1], which can be
deduced from a generalized Fan-Browder fixed point theorem in [15],
[16] as in [17].

THEOREM 0. Let X be a convex space, p,q: X x X — RU {400}
and h: X — R U {+oo} functions satisfying

(i) a(z,y) < p(z,y) for (z,y) € X x X and p(z,z) < 0 for all
r € X;
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(ii) for eachy € X, {z € X : p(z,y) + h(y) > h(z)} is convex or
empty;

(iii) for each z € X, {y € X : q(z,y) + h(y) > h(z)} is compactly
open; and

(iv) there exist a nonempty compact subset K of X and, for each
finite subset N of X, a compact convex subset Ly of X con-
taining N such that y € Ly\K implies ¢(z,y) + h(y) > h(z)
for some z € Ly.

Then there exists a point yo € K such that
q(z,y0) + h(yo) < h(z) forall =€ X.

Moreover, the set of all such solutions yo is a compact subset of K.

2. Main results

Let E be a real vector space, F' a nonempty set, and (-,-) : ExF — R
a real-valued function which is linear in the first variable in the sense :
for each given y € F, (-, y) maps E linearly into R.

THEOREM 1. Let X be a convex space in E, k : X — R U {400}
and f,g : X — F functions satisfying
(1) (1' - y,gy) < <:L' - y’fy) for (x,y) € X x “Y;
(ii) foreachy € X, {z € X : (z — y, fy) + h(y) > h(z)} is convex
or empty;
(ii1) foreachz € X, {y € X : (z—y, gy)+h(y) > h(z)} is compactly
open; and
(iv) there exist a nonempty compact subset K of X and, for each
finite subset N of X, a compact convex subset Ly of X con-
taining N such thaty € Ly\K implies (z —y, gy)+h(y) > h(z)
for some r € Ly.
Then there exists a yo € K such that

(z — yo,9y0) + h(yo) < h(z) forall z € X.

Moreover, if h : E — R U {+oo} is convex, then the inequality holds
for all x € Ix(yo).
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Proof. Putting p(z,y) = (z — y, fy) and ¢(z,y) = (z — y,9y) in
Theorem 0, we have a yo € K satisfying

(z —vo,9Y0) + h(yo) < h(z) forall z € X.

Moreover, suppose that h : E — RU{+o00} is convex. If z € Ix(yo)\X,
then there exist u € X and r > 1 such that = = y5 + r(u — o). Hence

1 1 1
u~yo=—(r—y)andu=—-2+(1--)yo € X.
r r r
Since (v — yo, gyo) + h(yo) < h(u), we have

2@~ 0,930} + () < A(w) < h(z) + (1= 2h(ye)

or
(z —yo,9%0) + h(yo) < h(z) for all =z € Ix(yo).

This completes our proof.
COROLLARY 1.1. Let X be a convex space in E, h : X — RU{+o0}
a l.s.c. convex function, and f : X — F a function such that

(a) for eachz € X, y > (z —y, fy) is Ls.c. on compact subsets of
X, and
(b) the condition (iv) of Theorem 1 holds with f = g.

Then there exists a yo € K such that
(* — yo, fyo) + h(yo) < h(z) forall z € X.
Moreover, if h : E — R U {400} is a convex function which is l.s.c. on

X, then the inequality holds for all 2 € Ix(yo)

Proof. We use Theorem 1 with f = g¢. Since, for each y € X,
z +— (z — y, fy) is linear and z — h(z) is convex, the set {z € X :
(z —y, fy) + h(y) > h(z)} is convex or empty. This shows that the
condition (ii) in Theorem 1 holds. Since h is ls.c., the condition (a)
implies (iii). Therefore, by Theorem 1, the conclusion follows.

For h = 0, we have the following:
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COROLLARY 1.2. Let X be a convex spacein E, and f : X — F a
function.

(1) If, for each z € X, y — (z — y, fy) is Ls.c. on compact subsets
of X, and if there exist K and Ly as in (iv) of Theorem 0 such that
y € LN\K implies (x — y, fy) > 0 for some =z € Ly, then there exists
a yo € K such that

(x —yo, fyo) <0 forall z € Ix{yo).

(2) If, for each z € X, y — (y — z, fy) is l.s.c. on compact subsets
of X, and if there exist K and Ly as in (iv) of Theorem 0 wuch that
y € LNy\K implies (y — z, fy) > 0 for some z € Ly, then there exists
a yo € K such that

(z —yo, fyo) <0 forall z € Ox(yo)-

Proof. The case (1) is a direct consequence of Corollary 1.1 with
h=0.

For (2), considering (y —z, fy) instead of (z —y, fy) in (1), we obtain
a yo € K such that

(yo — ', fyo) <0 for all 2’ € Ix(yp).
For any = € Ox(yo), let £’ = 2yo — = € Ix(yo). Then

{z — yo, fyo) <0 forall z € Ox(yo)-

REMARKS.
1. f Eisatvs andif z — (z,y) is continuous on E for each fixed
y € F, then the inward [resp. outward] set in Corollary 3.2 can be
replaced by its closure.

2. The coercivity assumption in (1) is implied by the following:

(*) there exists a nonempty compact convex subset L of X such
that, for each y € X\ L, thereis an z € L satisfying (z—y, fy) >
0.

166



Remarks on some variational inequalities

Corollary 1.2(1) with the assumption (*) improves the “variational
type” inequality of Juberg and Karamardian [10, Theorem]. In fact,
they assumed closedness of X and local convexity of E, and obtained
weaker conclusion.

3. For a compact X, the condition (*) holds automatically. There-
fore, from Corollary 1.2, we have the following:

COROLLARY 1.3. Let X be a compact convex subset inat.v.s. E, F
a topological space, and f : X — F a function such that (z,y) — (z, fy)
is continuous on E x X. Then there exists a yo € X such that

(z — yo, fye) <0 forall =€ W(y).

REMARK. Here W(yo) denotes any of Tx(yo) or Ox(yo). Corollary
1.3 strengthens Juberg and Karamardian [10, Lemma]. They showed
that Corollary 1.2 follows from Corollary 1.3 in a particular case.

Let (-,-) denote the inner product of a real inner product space. Then
Corollary 1.3 reduces to the following;:

COROLLARY 1.4. Let X be a compact convex subset in an inner
product space E and f : X — E a continuous map. Then there exists
an rg € X satisfying

(fzo,y —20) <0 forall ye W(xo)

REMARK. The origin of Corollary 1.4 goes back to Hartman and
Stampacchia [9] in 1966 for R"®. See also Stampacchia (22, Theorem
2.2] and Moré [13, Theorem 2.1].

We now show that Corollary 1.4 implies the following well-known
generalization of the Brouwer fixed point theorem.

COROLLARY 1.5. Let X be a compact convex subset in an inner
product space E and g : X — E a continuous map such that gr € W(z)
for all x € BdX. Then g has a fixed point.

Proof. For any z € X we have gz € W(z). Infact, for any z € Int X,
we have gz € E = Ix(z) = Ox(z). Define f =g —-1x : X — E. Then
by Corollary 1.4, there exists an z¢ € X such that

(970 — 0,y —x0) <0 forall ye W(zg).

167



Sehie Park

Since gzo = y lies in W(zo), we must have zo = gro as desired.

Let E be a real t.v.s., E* its topological dual (i.e., the vector space
of all continuous linear functionals £ — R), and (-,-) : E* x E - R
denote the natural pairing.

THEOREM 2. Let X be a convex space in E and let

plz,y) = (fa,y — z) + h(z) — h(y)

where h : X — R is a ls.c. convex function and f : X — E* is a
function such that

(a) for eachy € X, z — (fz,y — z) is Ls.c. on compact subsets of
X, and

(b) there exist a nonempty compact subset K of X and, for any
finite subset N of X, a compact convex subset Ln of X con-
taining N such that ¢ € Ly\K implies p(z,y) > 0 for some
yE€Ln.

Then there exists an z¢ € K such that
p(zo,y) <0 forall yeX.

Moreover, if h : E — R is a convex function which is l.s.c. on X,
then the conclusion holds for all y € Ix(xo).

Proof. In Corollary 1.1, interchange z and y and put F = E*.

REMARKS.

1. Note that Brézis, Nirenberg, and Stampacchia [4, Application 3]
obtained Theorem 2 under the stronger assumption that f is pseudo-
monotone and continuous with a much stronger condition than (b).
Theorem 2 improves Brézis [3, Corollary 29] and Hartman and Stam-
pacchia [9, Theorems 1.1 and 5.1].

2. Theorem 2 also improves Allen [1, Corollary 1]. In fact, he as-
sumed the following particular form of (b):

(b)" let L be a nonempty compact convex subset of X and suppose
that for each £ € X\ L there exists y € L such that p(z,y) > 0.
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From now on, let E* have any topology such that a continuous func-
tion f : X — E* satisfies the requirement (a) of Theorem 2. For
example, we equip E* with the topology of uniform convergence on
bounded subsets of E.

COROLLARY 2.1. Let X be a convex subset of E, and f : X — E*
continuous.

(1) If there exist K and Ly as in (b) of Theorem 2 such that z €
LN\K implies (fz,y — z) > 0 for some y € Ly, then there exists an
zo € K such that

(fzo,y — o) <O forall y € Ix(zo).
(2) If there exist K and Ly as in (b) of Theorem 2 such that = €
Ly\K implies {fz,z —y) > 0 for some y € Ly, then there exists an

zo € K such that

(fro,y —x0) <0 forall y€ Ox(zo).

Proof. (1) By putting = 0 in Theorem 2, we know that there exists
an z9 € K such that

(fzo,y —x0) <0 forall y € Ix(zo).

Since fzo € E*, this implies the conclusion.

(2) By the case for {fz,y — ) in Theorem 2, we know that there
exists a point zo € K such that (fzo,z0 —y') < Oforall y' € Tx(zo)
as in (1). For any y € Ox(zo), let y' = 220 — y € Ix(z0). Then

(fro,y — z0) = (fzo,20 —¢') <0

for all y € Ox(zo). Hence, (fzo,y — zo) <0 holds for all y € Ox(zo)-

REMARKS.
1. In case X is compact, Corollary 2.1 reduces to Park [14, Theorem
2], which strengthens Browder [5, Theorem 2].
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2. In case X is a closed convex subset of a t.v.s. E, if there exists a
compact convex subset L of X such that

K={zeX:(fz,y—z)<0forallye L} CL,

is compact, then the same conclusion holds. This improves Takahashi
[23, Theorem 3].

3. Instead of the continuity of f, it suffices to assume the condition
(a) of Theorem 2. Hence, Corollary 2.1 improves Allen [1, Corollary 2].

4. f zo € Int X or X = E in Corollary 2.1, it is obvious that there
exists z* € E such that fz* = 0. In fact, (fzo,y — zg) < 0 for all
y € E = Ix(zo) implies fzy = 0.

5. Corollary 2.1 has a very interesting interpretation when X is a
cone in E as follows :

A nonempty closed subset X is a cone in E if az + Sy € X for all
a,8 >0 and z,y € X. The polar X* of a cone X is the cone defined
by

X*={peE":(pz) >0 forall ze€ X}

COROLLARY 2.2. Let X be aconein E and f : X — E* continuous.
If there exist K and Ly as in (b) of Theorem 2 such that ¢ € Ly\K
implies (fz,z —y) > 0 for some y € Ly, then there exists an ro € X
such that

fxo € X* and (fzg,z0) = 0.

Proof. By Corollary 2.1(2), there exists p € K such that (fro,y —
zo) 2 0 for all y € X. Since (fzo,ay) > (fzo,z0) for all & > 0 and
¥y € X, we obtain (fzo,y) > 0 for all y € X, ie., fro € X*. Since
(fro,0 — zo) > 0, we have (fro,z0) = 0.

REMARKS.

1. The problem of finding a vector zo € X satisfying the conclusion
is known as the complementarity problem ; several problems in math-
ematical programming, game theory, economics, operations research,
and mechanics can be presented in this form.
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2. Corollary 2.2 generalizes Takahashi [23, Theorem 4]. Also Taka-
hashi [24, Corollary 2.1] proved Karamardian’s complementarity prob-
lem [11] by using a particular form of Theorem 0.

COROLLARY 2.3. Let X be a convex subset of E, and T : X — 2F*
a multifunction having a continuous selection f : X — E*.

(1) If there exist K and Ly as in (b) of Theorem 2 such that r €
LN\K implies (fz,y—z) > 0 for somey € Ln, then there exist o € K
and zg € E* such that

zy € Tz and (xf,y — xo) <0 for all y € Tx(zo).

(2) If there exist K and Ln as in (b) of Theorem 2 such that
z € Ly\K implies {fz,z —__y) > 0 for some y € Ly, then the same
conclusion holds for all y € Ox(zo).

Proof. Put z5 = fzo in Corollary 2.1.

REMARK. Corollary 2.3 is a particular form of the generalized quasi-
variational inequalities. For related results, see, e.g., Shih and Tan [18].

The following is a simple consequence of Corollary 2.3.

COROLLARY 2.4. Let X be a compact convex subset of E and T :
X — 28" a multifunction satisfying

(i) Tz is nonempty and convex for each z € X; and

(ii) T~y is open for eachy € Y.
Then there exist zg € X and z§ € E* such that

g € Txo and (x5,y —x0) <0 forall ye W(xo).

Proof. T has a continuous selection by a result in [2].

REMARK. Corollary 4.4 strengthens Simons [21, Theorem 4.5]. For
another proof, see Komiya [12]. This generalizes and unifies fixed point
theorems for multifunctions due to Browder {5}, Fan [8], Takahashi
[23], [25] and Cellina [7]. Simons [21] gave several comments on related
results to Corollary 2.4 and deduced some fixed point theorems from
Corollary 2.4.

For reflexive Banach spaces, Theorem 2 reduces to the following;:
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COROLLARY 2.5. Let X be a convex subset of a real reflexive Banach
space E, f : X — E* is a weakly continuous function, and h : X — R
a weakly l.s.c. convex function. If

(*) there exist a bounded subset K of X and, for each finite subset
N of X, a closed bounded convex subset Ly of X containing
N such that € LN\K implies (fz,z — y) + h(z) > h(y) for
some y € Ly,

then there exists an ¢y € K such that
(F20,70 = ¥} + h(zo) < h(y) for all y € X.
Moreover, if h is defined on E, then the conclusion holds for all
y € Ix(xo).
Proof. Switch to the weak topology.

REMARK. Browder [6, Theorem 6] obtained Corollary 2.4 under
stronger assumptions, i.e.,

(1) f is pseudo-monotone in the sense in [6] (which implies f is

continuous from any finite topology of X to the weak topology
of X*), and
(2) for some yo € X, there exists an Ry € R such that

{fz,2 = yo) + h(z) > h(yo)
for all z € X with ||z|| > Ro.
Note that (2) implies (*). In fact,
K ={z€X:(fr,a—yo) +h(z) < hyo)} C {x € X : laf] < Ro}
1s bounded.

Finally in this paper, we add a variational inequality for a non-real
Hausdorff locally convex space (simply, l.c.s.).

THEOREM 3. Let X be a nonempty bounded convex subset of a l.c.s.
E, and f : X — E* continuous from X to the strong topology of E*
such that

(%) there exist a nonempty compact subset K of X and, for each
finite subset N of X, a compact convex subset Ly of X con-
taining N such that y € Ly\K implies Re (fy,y —z) > 0 for
some x € L.
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Then there exists a point yo € K such that

Re (yo,y0 —z) <0 forallzr € Tx(vo).

Proof. Definep: X x X — R by
p(z,y) = Re (fy,y) forall z,y € X.

Then, for each z € X, p(z,-) is continuous by {19, Lemma 1}. By
applying Theorem 0 with & = 0, the conclusion follows.

REMARKS.
1. Theorem 3 generalizes Shih and Tan [19, Theorem 10] since they
assumed the following stronger condition than (*):

(+*) there exists a compact convex subset L of X such that, for each
y € X\L, there is an z € L with Re (fy,y — ) > 0.

2. If X is closed in Theorem 3, (*) is implied by the following:
(**%) for some nonempty compact subset C' of E and ¢ € X N C,

Re (fy,y — z0) > O for all y € X\C.

Therefore, Theorem 3 generalizes Shih and Tan {19, Theorem 11}.
3. For compact X, Theorem 5 improves Browder’s variational in-
equality in [5], [6].
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