• Title/Summary/Keyword: Variable Statistics

Search Result 1,353, Processing Time 0.022 seconds

A VARIABLE SELECTION IN HETEROSCEDASTIC DISCRIVINANT ANALYSIS : GENERAL PREDICTIVE DISCRIMINATION CASE

  • Kim, Hea-Jung
    • Journal of the Korean Statistical Society
    • /
    • v.21 no.1
    • /
    • pp.1-13
    • /
    • 1992
  • This article deals with variable selection problem under a newly formed predictive heteroscedastic discriminant rule that accounts for mulitple homogeneous covariance matrices across the K multivariate normal populations. A general version of predictive discriminant rule, a variable selection criterion, and a criterion for stopping with further selection are suggested. In a simulation study the practical utilities of those considered are demonstrated.

  • PDF

Variable sampling interval control charts for variance-covariance matrix

  • Chang, Duk-Joon;Shin, Jae-Kyoung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.4
    • /
    • pp.741-747
    • /
    • 2009
  • Properties of multivariate Shewhart and EWMA (Exponentially Weighted Moving Average) control charts for monitoring variance-covariance matrix of quality variables are investigated. Performances of the proposed charts are evaluated for matched fixed sampling interval (FSI) and variable sampling interval (VSI) charts in terms of average time to signal (ATS) and average number of samples to signal (ANSS). Average number of swiches (ANSW) of the proposed VSI charts are also investigated.

  • PDF

CHAID Algorithm by Cube-based Sampling

  • Park, Hee-Chang;Cho, Kwang-Hyun
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.239-247
    • /
    • 2003
  • Decision tree algorithms are used extensively for data mining in many domains such as retail target marketing, fraud dection, data reduction and variable screening, etc. CHAID(Chi-square Automatic Interaction Detector), is an exploratory method used to study the relationship between a dependent variable and a series of predictor variables. In this paper we propose and CHAID algorithm by cube-based sampling and explore CHAID algorithm in view of accuracy and speed by the number of variables.

  • PDF

Minimum Variance Unbiased Estimation for the Maximum Entropy of the Transformed Inverse Gaussian Random Variable by Y=X-1/2

  • Choi, Byung-Jin
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.3
    • /
    • pp.657-667
    • /
    • 2006
  • The concept of entropy, introduced in communication theory by Shannon (1948) as a measure of uncertainty, is of prime interest in information-theoretic statistics. This paper considers the minimum variance unbiased estimation for the maximum entropy of the transformed inverse Gaussian random variable by $Y=X^{-1/2}$. The properties of the derived UMVU estimator is investigated.

A compound Poisson risk model with variable premium rate

  • Song, Mi Jung;Kim, Jongwoo;Lee, Jiyeon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.6
    • /
    • pp.1289-1297
    • /
    • 2012
  • We consider a general compound Poisson risk model in which the premium rate is surplus dependent. We analyze the joint distribution of the surplus immediately before ruin, the deffcit at ruin and the time of ruin by solving the integro-differential equation for the Gerber-Shiu discounted penalty function.

A Penalized Principal Components using Probabilistic PCA

  • Park, Chong-Sun;Wang, Morgan
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.05a
    • /
    • pp.151-156
    • /
    • 2003
  • Variable selection algorithm for principal component analysis using penalized likelihood method is proposed. We will adopt a probabilistic principal component idea to utilize likelihood function for the problem and use HARD penalty function to force coefficients of any irrelevant variables for each component to zero. Consistency and sparsity of coefficient estimates will be provided with results of small simulated and illustrative real examples.

  • PDF

Usage of auxiliary variable and neural network in doubly robust estimation

  • Park, Hyeonah;Park, Wonjun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.3
    • /
    • pp.659-667
    • /
    • 2013
  • If the regression model or the propensity model is correct, the unbiasedness of the estimator using doubly robust imputation can be guaranteed. Using a neural network instead of a logistic regression model for the propensity model, the estimators using doubly robust imputation are approximately unbiased even though both assumed models fail. We also propose a doubly robust estimator of ratio form using population information of an auxiliary variable. We prove some properties of proposed theory by restricted simulations.

ANALYSIS OF AN MMPP/G/1/K FINITE QUEUE WITH TWO-LEVEL THRESHOLD OVERLOAD CONTROL

  • Lee, Eye-Min;Jeon, Jong-Woo
    • Communications of the Korean Mathematical Society
    • /
    • v.14 no.4
    • /
    • pp.805-814
    • /
    • 1999
  • We consider an MMPP/G/1/K finite queue with two-level threshold overload control. This model has frequently arisen in the design of the integrated communication systems which support a wide range applications having various Quality of Service(QoS) requirements. Through the supplementary variable method, se derive the queue length distribution.

  • PDF

Non-Conservatism of Bonferroni-Adjusted Test

  • Jeon, Cyeong-Bae;Lee, Sung-Duck
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.1
    • /
    • pp.219-227
    • /
    • 2001
  • Another approach (multi-parameter measurement method) of interlaboratory studies of test methods is presented. When the unrestricted normal likelihood for the fixed latent variable model is unbounded, we propose a me쇙 of restricting the parameter space by formulating realistic alternative hypothesis under which the likelihood is bounded. A simulation study verified the claim of conservatism of level of significance based on assumptions about central chi-square distributed test statistics and on Bonferroni approximations. We showed a randomization approach that furnished empirical significance levels would be better than a Bonferroni adjustment.

  • PDF

Monitoring with VSR Charts and Change Point Estimation

  • Lee, Jae-Heon;Park, Chang-Soon
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2005.05a
    • /
    • pp.191-196
    • /
    • 2005
  • Knowing the time of the process change could lead to quicker identification of the responsible special cause and less process down time, and it could help to reduce the probability of incorrectly identifying the special cause. In this paper, we propose a MLE of the process change point when control charts with the fixed sampling rate (FSR) scheme or the variable sampling rate (VSR) scheme monitor a process to detect changes in the process mean and/or variance of a normal quality variable.

  • PDF