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A Penalized Principal Components
using Probabilistic PCA
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Abstract

Variable selection algorithm for principal component analysis using penalized
likelihood method is proposed. We will adopt a probabilistic principal component
idea to utilize likelihood function for the problem and use HARD penalty function
to force coefficients of any irrelevant variables for each component to zero.
Consistency and sparsity of coefficient estimates will be provided with results of
small simulated and illustrative real examples.
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1. Introduction

Principal component analysis (PCA; Jolliffe, 1986) is clearly one of the most frequently
used method in statistics and related fields and often giving relatively small number of
linear combinations of variables which can effectively explain the large portion of a given
data set. However, each component still include all non-zero coefficients on all variables
and having problem in interpretation of the linear combination especially when the number
of variables is large.

A number of methods are available to aid interpretation. A common approach is ignoring
any coefficients less than some threshold value. Jolliffe (1972, 1973) examines some of
possible methods which discard irrelevant variables using multiple correlation, PCA itself,
and clustering, etc. More formal ways of making some of the coefficients zero are to
restrict the coefficients to a smaller number of possible values in the derivation of the
linear functions like -1, 0, 1 (Hausman, 1982) and variation (Vines, 2000) on this theme is
also possible. Rotation method used in factor analysis is also applicable but has its
drawbacks (Jolliffe, 1989, 1995). McCabe (1984) introduced a new strategy to select a subset
of the variables themselves and called it ’'principal variables.’

Other possible way would be introducing penalty function as in regression analysis.
Recently, Jolliffe (2002) applied L; penalty function method to maximization problem of PCA

in order to force any irrelevant coefficients in the principal components. He included L,

1) Associate Professor, Department of Statistics, Sungkyunkwan University, Seoul 110-745,

KOREA
2) Associate Professor, Department of Statistics & Actuarial Science, University of Central

Florida, Orlando, Florida, U.S.A.

- 151 -



A Penalized Principal Components using Probabilistic PCA

penalty function as an extra constraint to maximization problem of variance of linear
combination of variables and showed that it is more preferable to rotation methods and
several others.

We further extend idea of introducing penalty function to PCA problem by using
probabilistic PCA of Tipping and Bishop (1997). It enables us to use and utilize likelihood
idea so that consistency and sparsity of coefficients estimates are possible. We have seen
that using L) penalty function could result in relatively severe bias for the coefficient

estimates and found that hard thresholding penalty function (Antoniadis; 1997, and Fan;
1997) is better in preserving original directions after adding penalty function in the model.

2. Probabilsitic PCA with Latent Variable Model

It is well-known that PCA is closely related with factor analysis (Young, 1940; Whittle,
1952; Anderson, 1963). Also it is known that factor analysis can be expressed as a latent
variable model (Lawley, 1953; Anderson and Rubin, 1956). And further work by Tipping
and Bishop (1999) has shown how PCA may be viewed as a ML procedure based on a
probability density model of the observed data:

Suppose that we have p-dimensional data vectors Z,, n € {1, . ,N} and sample

covariance matrix S of = with N observations. Usual PCA becomes solving eigenvalue

problem
Swj = (SJ-’LU]' for ]= 1; e 4

Then the ¢ principal components of the observed vector T, are
cn = Wi(z,— ) with W= (wyw, .. . ,w,)

such that ¢ principal components of the observed vector Z, are those orthonormal axes onto
which the retained variance under projection is maximal. The components €. are then
uncorrelated such that the covariance matrix %,c,c. /N is diagonal with elements 0;.

The above PCA can be expressed as a latent variable model which relates p-dimensional
observation vector Z to a corresponding ¢-dimensional vector of latent variable ¢ as

z= We+p+e 1)
with conventional assumption of ¢~ N(0, I). Now, additional use of the isotropic noise
model N(0,0’I) for € in conjunction with equation (1) implies that the c-conditional
probability distribution over Z-space is given by
z| ¢ ~ N(We+p, o*I).

3. Penalized PCA

We can consider problem of extending penalized likelihood idea to the PCA for variable
selection in each component. A form of penalized likelihood becomes
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(w, J)—sz)iw(l wyl )

i=1j=1
with w; as the elements of W in its sth row and jth column and p(+ ) as a penalty

function. Fan and Li (2001) argued that unbiased, sparsity, and continuity as three

properties that a good penalty function should have, and suggested Smoothly Clipped

Absolute Deviation (SCAD) penalty function as the best one for regression problems.
Several well-known penalty functions including SCAD penalty function are as follows.

® L, p (| wy)=A]lwy? and it becomes LASSO with p=1 for least squares case.

® Hard Thresholding (HARD) Penalty: py (] wyl ) = A —( wyl =X YI(lwyl < A)

® Smoothly Clipped Absolute Deviation (SCAD) Penalty:
wi —2aw;+A?
-2 _ 3 " i AL w,<al
pa(wy) = 2(a—1) ’
(a+1)\°
2

Unfortunately, none of three penalty functions satisfy above all three properties
simultaneously. L,, penalty function is biased and this cause some serious problem especially

if w;= al

when applied to PCA problems. We have seen from small simulations that bias problem in
L, penalty is so serious that including penalty function usually resulted in domination of

one or few variables with relatively large coefficients compared to other variables. By the
way, hard thresholding (HARD) penalty function is unbiased and has sparsity but it is not
continuous. SCAD behaves like something between L; and HARD and need two

dimensional GCV (Generalized Cross-Validation) or usual CV to find optimal values for two
parameters, @, and A.

Overall, it looks reasonable to use HARD for the PCA problem since it looks best in
forcing coefficients of irrelevant variables to zero and at the same time in preserving
original directions after introducing penalty function in the ML procedure.

Now, we establish the consistency and sparsity of HARD penalty function for our
non-concave penalized PCA estimator. Let’s assume that the selected one component of W

can be divided as wo= (wy, ..., W)= (wip, wy)" and without loss of generality, assume
that wy = 0. And let @Q(w) be the marginal penalized likelihood function of w with respect

to the selected component only. In the first theorem we show that there exists a penalized
likelihood estimator that converges at the rate o, (n"l/2 +a,), where

a,= maz,-{p;n(l wy| ): wy= 0}. This implies that for the hard threshholding and SCAD
penalty functions, the penalized likelihood estimator is root-nconsistent if A,—0.
Furthermore, we demonstrate that such a root-n consistent estimator must satisfy w2/=\0

and this implies that the penalized likelihood estimator performs as well as if w2’=\0 were

known.
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Theorem 1 If maxz{| p)‘(l wy| )| : w;=0}—0, then there exists a local maximizer w o

Q(w) such that | |lw—w| | = Op(n_m-i-an ), where G. is given previously.

Theorem 2 Assume that
liminf, ., liminf_q,p. (8)/), > 0.

If A,—0 and /n\,—00 as n—co, then with probability tending to 1, for any

given W,

1 Q{(’lgl )}: MAZLy |y < Cn“/“Q{(’ui:' )}

w

2. Sparsity: w, = 0.

MLE can be obtained via EM algorithm as treating €, as missing so complete data set as
(%, ¢,) (Tipping and Bishop, 1999)

4. Simulation Results and Illustrations

We compared our method with small set of simulated and real data. Even though
coefficient estimates from ordinary PCA are orthonormal, we reported original coefficient
estimates from our method after standardizing only.

4.1 Simulation Results

The data sets are simulated as follows. It is based on the observation that z is
marginally distributed as normal with mean g and covariance matrix ¥ = WwT4oll
Further we can set ¢ as zero without loss of generality.

The following sets of data are generated 100 times for each combination.
® N: the number of observations (20, 50, 100, 300)
® P: the number of variables 6
® Q: the number of components considered: (1, 1, 0, 0, 0, 0), (1, 0, -2, 0, 0, 0)
® Largest eignenvalue: 2.5 (out of 6)

We will look at estimated directions and their standardized values for comparison with
true W and o’. Especially, number of zero estimates for true zero (T0) coefficients for each
case, and zero estimates for non-zero coefficients (FO) are our concern. We tried only two
preset values for A of 0.5 and 1.0.
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N A=0.5 A=1.0 N A=0.5 A=1.0

20 | TO: 174 FO: 4 | TO: 264 FO: 28 20 | TO: 174 FO: 4 | TO: 264 FO: 28
50 | TO: 259 FO: 2 | TO: 303 FO: 5 50 { TO: 259 FO: 2 | TO: 303 FO: 5
100 | TO: 267 FO: 0 | TO: 306 FO: 0O 100 [ TO: 267 FO: 0 | TO: 306 FO: 0O
300 | TO: 294 FO: 0 } TO: 316 FO: 0 300 TO: 294 FO: 0 | T0O: 316 FO: 0

¥ 1CASEL W=(1,1,0,0,0,0) ¥ 2 CASE W= (1,0, —2,0,0,0)

4.2 A Real Example

We combine three kinds of iris data sets into one and applied penalized PCA. We look at
standardized coefficient estimates for first three components of PCA. There are four
variables, Sepal Length, Sepal Width, Petal Length, and Petal Width. Each species have 50
observations so total of 150 cases.

Variable |Comp 1{Comp 2{Comp 3
Sepal Length| 0.701f 0.096] 0.294

Sepal Width| 0.045] 0.887] -0.088
Petal Length| 0.692| -0.448 0.867
Petal Width 0.166] 0.051] 0.392

X 3CASEL A=0.0

Variable |Comp 1|Comp 2|Comp 3 Variable |Comp 1]Comp 2|Comp 3
Sepal Length| 0.675] 0.084| 0.305 Sepal Length| 0681 0.000f 0291
Sepal Width| 0.034] 0.889] -0.082 Sepal Width| 0.000{ 0918 -0.061
Petal Length| 0.716] -0.451| 0.867 Petal Length| 0.719( -0.397f 0.876
Petal Width 0.175 0.000] 0.386 Petal Width 0.139] 0.000{ 0.380

E 4CASEIl: A=0.5 E5CASEI: A=1.0

Sepal Width in the first component and two variables Sepal Length, and Petal Width
becomes 0 with A =0.5 and 1.0. When A becomes larger it tends to force bigger estimates

bigger and smaller estimates smaller.

5. Discussions

We introduced a variable selection algorithm for principal component analysis using
penalized likelihood method. From the results from small simulation we could have strong
feeling that our method would be quite effective in forcing coefficients related to irrelevant
variables in PCA problems to zero. Hence the proposed method can be successfully applied
to high-dimensional PCA problems with relatively large portion of irrelevant . variables
included in the data set. And also it is straightforward to extend our likelihood method in
handling problems with missing observations by using EM algorithms. Further extension of
the penalized PCA method to any problem which need to solve eigenvalue or general
eigenvalue problems like sliced inverse regression (SIR) or so.
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