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ANALYSIS OF AN MMPP/G/1/K FINITE QUEUE
WITH TWO-LEVEL THRESHOLD OVERLOAD CONTROL

GYEMIN LEE AND JONGWOO JEON

ABSTRACT. We consider an MMPP/G/1/K finite queue with two-
level threshold overload control. This model has frequently arisen in
the design of the integrated communication systems which support
a wide range applications having various Quality of Service (QoS)
requirements. Through the supplementary variable method, we derive
the queue length distribution.

1. Introduction

Significant effort is currently being devoted to the development of inte-
grated communication systems, which can support a wide range applica-
tions including voice, video, and data. One of major problem in designing
the system is to guarantee various Quality of Service (QoS) requirements
of applications.

Once the buffer room is filled up, all incoming messages must be lost.
In that time, QoS of all applications present in the system is significantly
deteriorated. Therefore overload control, set of all actions reducing the
recurrence of such shut-down periods, is an important factor in design of
the system.

Overload control is in general performed by selectively discarding cells
during each time period where the queue length exceeds a high-level
threshold Ly until it drops to a low-level threshold Li(< Lg). Such a
time period is called an overload period, and the time interval between
two adjacent overload periods is called a underload period.
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Many researchers have studied the overload control in various queueing
systems. For the ATM switching with cell discarding scheme, Yegani [5]
considered an one-level (i.e., L; = L) overload control in MMPP/G/1 fi-
nite queue, where the MMPP is acronym of the Markov modulated Poisson
process. He gave a way to derive the loss probability with the embedded
Markov chain technique.

In this paper, we focus on a study of the two-level (i.e., L; < Ls)
overload control in an MMPP/G/1 finite queue since the two-level control
requires less amount of work to control the system. For the analysis, we
employ the supplementary variable method originated by Cox [1].

The rest of this paper is organized as follows. Section 2 consists of the
definition of MMPP. In Section 3, we derive the queue length distribution
through the supplementary variable method.

2. Markov Modulated Poisson Process

The Markov modulated Poisson process is a doubly stochastic Poisson
process, whose arrival rate is a function of the state of a given continuous-
time Markov process. We shall denote the infinitesimal generator of the
underlying Markov process by () and the diagonal matrix composed of the
arrival rates by A.

Define the conditional probabilities

P, ;(n,t) = Pr(J(t) = 4, N(t) = n|J(0) =i, N(0) = 0)

where N(t) and J(t) denote the number of arrivals during (0,¢| and the
state of the underlying Markov process @) at time ¢, respectively. In [3],
it was showed that matrices P(n,z) = (P, ;(n, z))1<i j<m have probability
generating function

(1) P(z,t) = f: 2"P(n,t) = exp(R(2)t), 0 < 2 < 1,

n=0
with R(z) = Ry + 2R;, where
Ry=Q —Aand Ry =A.

In what follows, we shall assume that the matrix Ry! exists.
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3. Analysis

In this section, we will analyze the MMPP/G/1/K finite queue with
two-level overload control through the supplementary variable method.
When describing the MMPP, we shall use the same notations as in Section
2. The distribution of a service time will be denoted by H(z), its mean
by u, and its hazard rate function by r(z). During the overload periods,
the arrival rate matrix A is assumed to be reduced to a given matrix A,.

3.1. Supplementary variable method

Let X (t) denote the number of customers in the system at time {. We
shall define the elapsed service time S(t) as follows: If X(t) > 0, S(t)
denotes the amount of service already received by the customer in service
at time ¢. Otherwise, S(t) denotes the amount of time elapsed after the
last service completion before t. We also define O(t) to be ‘o’ if the
system stays in overload periods at time t and to be ‘u’ otherwise. Then,
the process (O(t), J(t), X (t), S(t)) is a four-dimensional Markov process.

Suppose that

m(i,n,z)dr = tlim Pr(O(t) =u, J(t) =i, X(t) = n,z < S(t) < =+ dx)
To(i,n,x)dz = lim Pr(O(t) =0, J(t) =%, X(tj =n,z < S(t) < z +dx)

t—o00

exist for all states and define

mu(n,z) = (m(l,n, ), ,mu(m,n,z)),

wo(n,z) = (m(l,n,2),- -, T(m,n,)).
Let us recall the definitions of Ry, R), R(z), P(n,z), and P(z,z) for the
uncontrolled arrival rate matrix A. In same way, we shall define R§, RS,

R,(2), P,(n,z), and P,(2, z) for the controlled arrival rate matrix A,. Also,
we write

P,o(n,m,z) = / P(n—1,y)RiP,(m,z —y)dy, n>1,m >0
0

and denote P(z,s,z) the generating function of {P(n,m,z),n > 1,m >
0}.

Conditioning on the state of the process (O(t), J(t), X(t), S(t)) time x
ago, the Kolmogorov forward equations for the joint distribution 7, (n, )
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and m,(n, z) can be written down as follows.

m,(0,z) = m,(0,0)P(0,z),

my(n,z) = Y my(k0)P(n—k,2)H(z), 1<n< Ly~ 1,
k=1

To(n,z) = Y wu(k,0)Puo(Le — k, 1~ Lo, 2)H(2) - 1(1penck-1)

n

+ Y wo(k,0)Py(n —k,2)H(z), Li+1<n< K -1,

k= L1+1
7o(K,z) = Z Z Tu(k, 0)Pyo(Le — k, i, z)H(z)
k=1 i=K-L,
K-1 00
+ D wo(k,0)Py(i, z) H(z).
k=Li+1i=K—k

where H(z) = 1 ~ H(z) and 1(y is an indicator function. The joint
distribution m,(n, z) and ,(n, z) should satisfy the boundary conditions

7.(1,0) = / (2, z)r(z)dz + / 7, (0, ) Ry dz
0 0

(1, 0) = / m(n+ 1L z)r(z)de, 0<n<Ly—2,n#1,L;
0

mo(n,0) = / wo(n+ 1, z)r(z)de, Li+1<n<K-1,
0

o0

o0}
7, (L1,0) = / (L1 + 1, z)r(z)dz +/ (L, + 1, z)r(x)dz
0 0
(L —1,0) =0
7o(K,0) =0
and the normalization condition

Z/ mu(n,z)dx e + Z/wonzdme—l

n=L;+1

where e = (1,1,--- 1)
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Before finding the coeflicients m,(n,0) and 7,(n, 0) above, we consider
the embedded Markov chain {O(7,), J(7,), X(7,)}, where {7,} is the nt*

epoch of service or idle completion. Then the transition probability matrix

of {O(m,), J (1), X(73) } is
o= (5 &)

where the block F),, is a square matrix of order m(L; — 1) given by

0O R 0O - 0
Ao A Ay - Ao

Fu,u = 0 AO Al T AL2~3
0 0 0 A A
with

A, = /:o P(n,z)dH(z).

The block F,, is a square matrix of order m(K — L; — 1) given by

A} AG - Ak g Zg‘};{_h_l A7
AG AT o Ak 3 2kek-n,2 AR
o o - Ag Dot AT

with
AZ:/ P,(n,z)dH(z).
0

The block F, is an m(K — Ly — 1) x m(Ly — 1) matrix which is given by

0 -+ 0 A 0 -~ 0
O --- 0 O O --- 0

O .- 0 0 0 --- 0
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The block F,, is an m(Ly — 1) x m(K — Ly — 1) matrix given by

0O --- 0 0o ... 0 0

0 - 0 Ap10 - AL-1K-I1 ZZiK—Lz A1k

0 -+ 0 A0 -+ Ap-2k-I,41 Z/?;K—Lg AL, ok

o --- 0 Asp -+ Ak 1,-1 . Z?:K~L2 Ask
with

An,mz/ P,o(n,m,z)dH(z).
0

THEOREM 1. The coefficients 7, (n, 0) and m,(n, 0) of joint distribution
7.(n,z) and ®,(n,z) are given by

(7ru(070)a e aﬂu(LZ - 2,0),71'0(L1 + la 0)7 to ,ﬂo(K - 17 0))

1
u U (] O
= — (m RN R N _1)
p—axiul + Rylle™ VTl Thl Tk
where the vector (xf, - ,&},_5, &}, .1+, T%_;) is the stationary vector

of the matrix Qg

PROOF. By plugging Kolmogorov forward equations in the boundary
conditions, we show that (m,(0,0),--- ,mw,(L1 —2,0), wo(L1+1,0),--- , 7,
(K —1,0)) is a positive invariant vector of the stochastic matrix Q, that
is,

(ﬁu(()’ O)a Tt )ﬂ.u(L2 - 2) 0)7 ﬂo(Ll + ]-a O)) e aﬂ.o(K -1, 0))
= C(:Bg, R mliz—?? moLH»l tte 7:1:‘})(-1)
for some ¢ > 0. From the normalization condition, we have

L,-2 K-1

m.(0,0)[—Ry'le + p Z 7y (n,0) + Z w,(n,0)| e=1.

n=1 n=L1+1
Therefore, we have
1
c= - —
p—xful + Ry'le
So the proof is complete. a
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The matrices A,, A%, and A,, ,, can be efficiently evaluated by means of
the iterative procedure in [2]. See Yegani’s results [5] for details. Thus we
can compute 7,(n, z) and m,(n, z) through deriving the stationary vector
of the stochastic matrix @ by the standard methods (e.g., Gauss-Shield
algorithm, etc.).

3.2. Queue length distribution

In this subsection, we shall give a way to obtain the queue length dis-
tributions m,(n) and m,(n) using the coefficients 7,(n,0) and m,(n,0)
derived in the previous subsection.

Let us first define

M, = /000 P(n,z)H(z)dz, n >0
M = /:0 P,(n,z)H(z)dz, n >0
M,n, = /000 P,(n,m,z)H(z)dz, n>1,m >0
and denote by M(z), M,(z), and M(z,s) the generating functions of

{M,,n >0}, {M2,n >0}, and {M, n,n > 1,m > 0}. Then Kolmogorov
forward equations yield

(2) m,(0) = mu(0,0)[-R5]

(3) my(n) = Y mwy(k,0) Mg, 1<n< Ly—1,
k=1
Ly~2

(4) mo(n) = Z (K, 0)Mp,—kn—1, - LiL,<n<k—1)
k=1

n

+ Y wo(k OMey, Li+1<n<K-—1

k=L1+1

From the fact that 322 7, (n) + 2K L.+1 To(n) is the stationary vector

n

of the underlying Markov process @), we get

Ly—-1 K-1

(5) wo(K) =6 - Z mu(n) — Z (1)
n=0

n=L1+1
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where @ is the stationary vector of the matrix (). Therefore, we can obtain
the queue length distribution if the matrices M,,, M?, and Mg are given.

From the arguments in [4], the matrices M, and M,‘{ can be obtained
in the following way:

An = MnRO + Mn—lRI + ]-(n:O) ' Ia
A° = MCRZ+M° RS+ 1peg 1.

Similarly, the following lemma enables us to obtain M, ,, from A,, ,, recur-
sively.
LEMMA 1. The matrices M, ,, satisfy

An,O = M,.1R;+ Mn,oRg, n>1
An,m = Mn,mR(o)'f"Mn,m_lR(l), n Z 1,m Z 1.

PROOF. Differentiating the generating function P, ,(z, s, z) of { P, ,(n, m, z),
n > 1,m > 0}, we have

Ed;} (/0 2P(2,4)R\Py(s, T — )dy)

= 2zP(z,2)R; —i—/ zP(z, y)Rld P,(s,z — y)dy
0
= 2zP(z,x)R; + P(z,s,z)R,(s).

The first equality above is obtained by Leibniz’s theorem and the fact that
P,(z,0) = I. The second equality is derived from the equation (1). If we
integrate the generating function A(z,s) of {A,nm,n > 1,m > 0} by part,
we have

A(z,s) = /OOP(z s,z)dH(z)

= / 7 P(z,s,z)H(z)dzx
= zM(z)R1+ M(z,s)R°(s).

With the above equation, we directly derive this lemma. So the proof is
complete. O

From the above relation of (M,, M2, M,, ) and (A,, A%, A,.») and the
equations (2)-(4), we can also derive the queue length distribution 7, (n)
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and m,(n) in the following way.

7, (0) = m,(0,0)[—Ro] ™!

(1) = [mwu(1,0) — 7,(0,0)][~ Ry !

w,(n) = [mu(n, 0) - mu(n -1, O)H_RO]—I + myu(n — 1)R1['“R0]_1:
2<n<Ly—-1n#L;+1

mon) = [mo(n,0) = [mo(n — 1,0)][~BE)™ + mo(n — 1) RE—Rg]~
L1+1<TLSK—1,TL7£L2

and
mu(n) = [my(n,0) — my(n — 1,0))[—Ro]™" + mwy(n — 1)Ry[—Ro)~*
+ 7o(n, 0)AJ[~RyY], n= L, +1
wo(n) = wo(n,0)[I — AJ[-RY™, n=L;+1

To(n) = [mo(n,0) — m,o(n — 1, 0)][-Rg ™ + mo(n — 1)R?[_R8]—1
-+ 7ru(n - I)Rl[—RS]—l, n = Lg.

Thus we can obtain m,(n) and ,(n) without derivation of M,, M?, and
M, .
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