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Non-Conservatism of Bonferroni—Adjusted Test

Gyeong Bae Jeon D and Sung Duck Lee 2)

Abstract

Another approach (multi-parameter measurement method) of interlaboratory studies
of test methods is presented. When the unrestricted normal likelihood for the fixed
latent variable model is unbounded, we propose a method of restricting the parameter
space by formulating realistic alternative hypothesis under which the likelihood is
bounded. A simulation study verifies the claim of conservatism of level of significance
based on assumptions about central chi-square distributed test statistics and on
Bonferroni approximations. We showed a randomization approach that furnished
empirical significance levels would be better than a Bonferroni adjustment.

Keywords . Interlaboratory studies, Bonferroni-adjusted Test, Maximum likelihood. Empirical
distribution, Latent variable model.

1. Introduction

There are two ways in which interlaboratory studies are conducted. The first is designed to
monitor laboratories to see good agreement between the results obtained by different
laboratories, by allowing each laboratory to compare its results with those obtained by other
laboratories and take remedial action, if necessary. It is offen referred to as "proficiency
testing.” Here, the laboratorise themselves are of primary concern. The second is concerned
not so much with the laboratories as with the method of measurement. Tests performed with
presumably identical materials, in presumably identical circumstances usually do not yield
identical results. This 1s attributed to unavoidable random error inherent in every test
procedure; the factors that may influence the outcome of a test cannot all be completely
controlled. Many different factors contribute to the variability in application of a test method,
including the operator, equipment used, calibration of the equipment, and environment.
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Committee Ell of the American Society for Testing Materials(ASTM) has issued a software
program with its standard E691 deals with the evaluation of methods of measurement in
terms of reproducibility and repeatability. As a supplement to E691, J. Mandel proposed
additional calculations using an unweighted average to estimate the materials’s property and
fitting a row-linear model to examine what mathematical model underlies the data.
Proctor(1991) used nonlinear, generalized least squres to fit to sample covariances of the latent
model(2.2) below. Fuller(1987) also noted that the model (2.2) was the psychometric single
factor model. His development of maximum likelihood estimators follows closely that of
Lawley and Maxwell(1971). Pantula and Fuller(1986) derived algorithm computing the
maximum likelihood estimator and the estimated covariance matrix of the estimators of the
factor model under factor vector is distributed as an normal random vector.

Maximum likelihood tests for difference among variances poses a challenge in that the
likelihood can easily become unbounded. While we cannot apply the method of maximum
likelihood estimate to the multivariate normal distribution of the observations to find estimates
of error variances, we provide a alternative way of estimating parameters. We formulated 8
models for hypothesis tests and supplied test methods by likelihood ratio tests to see
differences in means and slopes and variances.

This difficulty was overcome by finding a test statistic based on a difference in two
likelihoods, both from estimates interior to parameter space. The resulting test statistic had a
distribution not easily characterized and simulations were needed. Thus the major objective
become to provide a useful test of variance equality.

In this paper, we consider the latent variable models for interlaboratory studies setting and
derive likelihood function in Section 2 and propose the Bonferroni multiple comparison
procedure for several simultaneous tests of significance in relatively nonstandard situations in
Section 3. In Section 4, we also give an alternative method of formulating hypotheses in
which the laboratories are segregated into subgroups defined by commonality of variances.
Furthermore, we give simulations studies for the verifications and test modification in Section
5 and 6, respectively. Then concluding remarks are given in Section 7.

2. Latent Variable Model

A classical measurement error model decomposes the recorded measurement X into a true
value T and a random error E, ie.,
X=T+E, 2.1)

where E (E)=0 and Var(E) = 62, a constant.
Elaborations of the model arise from specifying the true value T to accommodate a number
of materials and a number of laboratories along with allowing for non-constant variance. We
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consider the latent variable models for interlaboratory studies setting (ASTM, 1992).
The model that emerges is:

X,’j—_* /l,'+ B,' Z'j+ [ (22)
where X ; denote observation with i=1,--- L indexing laboratories or tests and j=1,---.M

indexing subjects or materials. The random € ; have zero mean and variance ¢ Tf and r; are
taken as fixed quantities with zero mean and unit finite population variance. The g, and §&;

may similarly be taken as fixed.
With the base model given by (2.2), eight variations on the model concerning the equality

of the p¢,'s, B,/s and ¢ ?’s are considered.
To determine estimates of the unknown parameters, we use maximum likelihood which
minimizes ~log L , where
LCpy, o, pr, Bros B, Ty, T, J%,"', o %)
= L 11— lexp{——% >. (X'j“#i; By )"
(om) 2 (o7 =1 o4

2.3
This L is the likelihood function obtained under the assumption that the observations have
a multivariate normal distribution. Anderson and Rubin (1956) showed that the likelihood

function does not have a maximum. To show this fact, note that if g;=0, f,.=1 and
t,= Xyithen ( X;,— pg;— BL t;) is zero so O’i can be made arbitrarily small without

changing the quantity in the exponent of (2.3). As o i approaches zero, the likelihood is

unbounded. Thus the likelihood function has no maximum, and maximum likelihood estimates
do not exist.

Differences among the g ,’s which might be called additive biases are widespread and can

be easily explained by calibration problems. The differences by A,’s which are sometimes

called scale biases also arise from relatively simple conditions. The difference among the ¢ ?’s
come from a complex of activities and are perhaps best considered last.

The first alternative hypothesis of interest is significance in biases g, the second one is

about slopes B, and finally about error variances ¢ ?S Proceeding in this sequence we stop

whenever a failure to reject occurs.

3. Bonferront Multiple Comparison Procedure

The Bonferroni multiple comparison procedure is customarily used when doing several
simultaneous tests of significance in relatively nonstandard situations in which other methods
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do not apply. When one wishes to simultanecusly test each of several hypotheses at a
common significance level ', the generalized Type 1 error probability @, (i.e., the probability of
rejecting at least one of those hypotheses being tested that is in fact true), is typically much

in excess of @’. Thus it is usually desirable to ensure a pre-selected value for @ by using a

multiple comparisons testing procedure for conducting the multiple tests. Let x 2(1), X Z(R)
be the set of R statistics with corresponding p-values, P, -, Pp for testing hypotheses
Hqy, -, Hp.

The Bonferroni multiple test procedure is performed by rejecting Hy= m H; if any

p-value 1s less than—}aé. Furthermore the specific hypothesis H(; is rejected for each
P,S—?é (i=1,---.R). The Bonferroni inequality,

Pr{U( P,-S—%)}Sa (0<a<1),
ensures that the probability of rejecting at least one hypothesis when all are true is no
greater than a.

A criticism of the classical Bonferroni test procedure is that it is too conservative for highly

correlated test statistics. Sidak(1968, 1971) has shown that the significance level for each test

1
—?—é can be improved by usingl1— (1—a) R which is less conservative. But the degree of

mprovement for <10 and @=0.05 is slight.
4. Alternative Method of Formulating Hypothesis

The likelihood with all variances equal is well behaved and the calculation of maximum
likelihood estimates is relatively routine. The likelthood with unequal, unconstrained variances
1s unbounded with some variance estimates falling on the boundary of the parameter space

(o 'f'=0 for some i). Thus it is not possible to obtain a meaningful test of
HO: 6%:...-:6%
H,: not all 0:,2- equal.

However, in interlaboratory study applications it is unlikely that the full generality inherent
in H; is necessary. Likely departures from H, are those in which the laboratories are
segregated into subgroups defined by commonality of variances.

The expectation that variances will likely segregate into such groups provides the rational
for constructing various null and alternative hypotheses which incorporate grouping of the

variances. These have the advantages of both practical relevance and boundedness of the
likelihood provided all of the groups contain at least two laboratories.
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We pair two laboratories and assume them to have a common variance while the other
variances are free to differ. Denote these laboratories as al and a2 and their common variance

as o %al_az). Let 05 denote the common variance when the ¢ ?’s are all equal. The null and

alternative hypotheses are formulated as

e 2 2 — 2 __ 2
Ho.O']_-—-O"Z =01 = 0

and H: ogzd%al,az), for i#al, a2

2 . .
where 0 (4.4 1S the common variance of al and a2.

For some data observations, convergence may not be achieved if the data suggest that
another laboratory has a smaller variance than the initially designated common variance

o %al_ag) of the paired laboratories. If this happens, the likelihood is unbounded and a

minimum under the alternative hypothesis H; does not exist. Thus we would run all possible

pairs (R=A-L§:—]‘)—) and find pairs satisfying the constraints ¢ > ¢ 2(a1,a2) for i+al, a2. If
more than one pair converged, we would pick the one that has the largest x2 or the smallest
p-value. We would thus apply the Bonferroni multiple comparison test at significance level

__2a .
L(L—D) for the alternative Method.

5. Simulation Study: Verification Phase

A simulation study was done to verify the claim of conservatism of level of significance
based on assumptions about central chi-square distributed test statistics and on Bonferroni
approximations.

To describe the asymptotic behavior of the likelihood ratio statistics and thereby determine
the actual size of the tests for equal variances, we can simulate their behavior under the null
hypothesis.

We used four sets of parameter values in (2.2):

Case 1: Equal biases and equal slopes (L=6, M=14)
Case 2: Equal biases and unequal slopes (L=6, M=14)
Case 3: Unequal biases and equal slopes (L=6, M=14)
Case 4. Unequal biases and unequal slopes (L=6, M=14).

We examined the Bekk data from Mandel and Lashof (1959). Fourteen laboratories
participated in the interlaboratory study and each made 8 replicate measurements on each of
14 paper materials. Fuller (1987) analyzed the logarithms of the averages of the replication for
six laboratories and we will work with these same data.

Under the null hypothesis H,, we generated NS=1000, s=1, --, NS, data sets for L=6. From
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the 1000 simulated data sets, likelihood ratio statistics T ,Ef)=2{ L¥9Cw)—L ,(es)(/.?})} for s =
1,+--, 1000 and separately for the k = 1,---, 15 combinations of pair along with its p-value,

P o —value, determined as [l—F xf( T ,(f))] were calculated to study likelihood ratio
statistics T, k = 1,---, 15, have level- a tests. The actual level of significance of the test

for equal variances was estimated as the proportion of replications which rejected the null

hypothesis H, at significance level @. Define the true level of significance
P 7 (a)=Pr(Pr,—value < a@). The true level was estimated by

( P r,—value)

?Tp(a)z

These estimated levels were compared with the nominal level of the test for equal
variances. The test of equal variances was performed at the a = 0.10, 0.05, 0.025 and 0.01
significance levels. Table 1 shows that the estimated actual levels exceed the nominal levels.

We also calculated T &, = max(T (¥, k=1,---,15) along with its Bonferroni adjusted
p-value BAPY to study whether the test statistic T . is approximately level @. The
BAP® were calculated by 15[1— F (T f,f;x)] for s=1,---,1000 simulated data sets under

the null hypothesis H,. The actual level of significance of the test for equal variances was
estimated as the proportion of replicates that rejected the null hypothesis H, at significance
level a. Define the true level of significance P pap(a)= Pr(BAP<{a). The true level was
estimated by

_ ( () )
Ppar()= Bﬁg)o <a . (5.2)

We had expected that Ppgsp(a) will be less than or equal toe, but we found that
estimated levels are above the true levels from Table 2. The Bonferroni correction is not
conservative in this case. That is, the actual levels exceeded the Bonferroni corrected nominal
levels.

Actually, the data suggest that there are bias and slope differences. Table 3 shows that the

observed test statistic T max Of 16.718 is not significant at the 5% level. In fact, it has an empirical

significance level of 12.8%. This is found by calculating TIOO— g}( T ﬁ,ﬁx >16.718). That is, the

actual levels of significance are quite far above the Bonferroni corrected nominal levels. These
actual levels when slopes and biases are unequal are even more inflated than when slopes and

biases are equal. This suggests that the 7T, does not have a chi-square distribution under H .
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Table 1. Proportion of rejections of Hy, P r.(@) , with 95% confidence limits.

(L=6,NS=1000)

a Case 1 Case 2 Case 3 Case 4
0.010 0.028 (0.025, 0.031) | 0.035 (0.032, 0.038) | 0.036 (0.033, 0.039) | 0.047 (0.044, 0.050)
0.025 0.049 (0.046, 0.053) | 0.061 (0.057, 0.065) | 0.067 (0.063, 0.071) | 0.079 (0.075, 0.083)
0.050 0.083 (0.079, 0.087) 1 0.093 (0.088, 0.093) | 0.105 (0.100, 0.110) { 0.114 (0.109, 0.119)
0.100 0.132 (0.127, 0.137) 1 0.142 (0.136, 0.148) | 0.154 (0.148, 0.160) { 0.164 (0.158, 0.170)

Table 2. Proportion of rejections of Hy , ?BAp(af) , with 95% confidence limits.

(L=6,N5=1000)

a Case 1 Case 2 Case 3 Case 4
0.010 0.041 (0.029, 0.053) | 0.049 (0.036, 0.062) | 0.043 (0.030, 0.056) | 0.084 (0.067, 0.101)
0.025 0.066 (0.051, 0.081) | 0.077 (0.061, 0.094) | 0.074 (0.058, 0.090) | 0.112 (0.102, 0.122)
0.050 0.090 (0.072, 0.108) [ 0.110 (0.091, 0.129) | 0.114 (0.094, 0.134) | 0.157 (0.134, 0.180)
0.100 0.129 (0.125, 0.150) | 0.146 (0.124, 0.168) | 0.161 (0.138, 0.184) | 0.202 (0.177, 0.226)

Table 3. Intended and estimated true levels for T nac. (NS=1000)

Intended true Estimated true 1?2 L) Observed
l ——
level a level ? BAP ( a) = T max
0.01 0.084 19.364
0.025 0.112 17.331 16.718
0.05 0.157 15.777

Table 4. Estimated proportion of rejection, P ge(@). (NS=200)

P poot — valuea P oot (@) se.l Pgula)
P poo: — value<0.01 0.010 0.0070
P pgoot — value<0.01 0.020 0.0099
P poor — value<(.05 0.045 0.0147
P goos — value<0.05 0.045 0.0147
P g — value0.1 0.090 0.0202
P goos —value<0.1 0.105 0.0217

6. Simulation Study: Test Modification Phase

The Bonferroni adjustment does not always work and thus we turn to empirical significance

levels based on simulations. Replicated values of T 5;3,,(, s = 1,--, NS, evaluated from the
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successive bootstrap samples can be used to approximate the null distribution of T .. and
this enables an approximation of the particular empirical level of significance corresponding to

the value of T .. evaluated from the original sample.

The approach involved the simulation of 200 sets of data (NS=200) under the null hypothesis H
as before by (2.2). For each simulated data set, we calculated T f,f;x and its P po—value from
chi-square distribution and performed q=1, -+, 100 bootstrap replicates (NQ=100). These 100 data

sets were generated using the biases and slopes from the s th generated data set and also used

its pooled variance. And we calculated T 5,?5,‘? =max( T ,(f’ 9 k=1,--,15) for g=1, ---, 100 and for

each s and P g, «w—value by —1(1)_6 gll( T %9y 79 ) We compare the frequency
=

distribution of 200 P g, — value grouped into 10 classes, with the theoretical distribution that
P g —value should follow if the error distribution is uniform. We note that the agreement

between the observed ( f.) and the expected frequencies ( F ) appears good. The test criterion

c Fc £
to apply the x2 test of goodness of fit is x2= ﬁ ——(L‘—l—

2 . .
2 F. . The x“=7.4 which is less

than yx 3.05 =16.92 with 9 degrees of freedom, and so there is not sufficient evidence to reject at the

- F 2
5% level. But x2= ﬁl—g—f—cﬁr—c)—
= c

at the 5% level and suggest departure from a uniform distribution. The significance level based on

=545.2 of the Bonferroni adjusted p-value(BAP) is rejected

P gt — value seems close to the nominal ones but those based on BAP are excessive. This

would cause too many false positives by too often finding variances to be unequal when they were
not.

7. Conclusion

We fitted a multi-parameter measurement model with the material true value as a fixed
latent variable by maximum likelihood estimation. ~We found that maximum likelihood
estimation of unequal, unconstrained error variances leads to an unbounded likelihood. We
formulated and studied a alternative hypothesis under which the likelihood is bounded.
However, the resulting test statistics did not have central chi-square distributions. The
significance levels under central chi-square assumption and with a Bonferroni adjustment for
multiple testing were found by simulations to be greater than nominal levels. This result
suggested that a randomization approach that furnished empirical significance levels would be
better than a Bonferroni adjustment, and we verified this by further simulations.
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