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Abstract
Properties of multivariate Shewhart and EWMA (Exponentially Weighted Moving

Average) control charts for monitoring variance-covariance matrix of quality variables
are investigated. Performances of the proposed charts are evaluated for matched fixed
sampling interval (FSI) and variable sampling interval (VSI) charts in terms of average
time to signal (ATS) and average number of samples to signal (ANSS). Average number
of swiches (ANSW) of the proposed VSI charts are also investigated.
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1. Introduction

The quality of a product is often characterized by joint levels of several correlated variables
rather than a single variable. When the quality variables are correlated, one can obtain better
sensitivity by using multivariate control chart than separate control charts for each of the
process parameters.

Control charts are usually used for monitoring quality variables from a process to detect
any shifts in the production process and eliminate assignable causes in the parameters of the
distribution of these quality variables. One wishes to detect any departure from a satisfactory
state as quickly as possible and identify which assignable causes are responsible for the
deviation.

The ability of a control chart to detect process changes is determined by the length of time
required for the chart to signal. The expected time to signal is simply the product of the
average number of samples to signal (ANSS) and the length of the fixed sampling interval.
Therefore the ANSS can be thought of as the expected time to signal in FSI procedures.

Recent years, applications of VSI procedure have become quite frequent. In VSI proce-
dures we can use a finite number of sampling interval d1, d2, · · · , dη, and the choice of any
sampling interval depends on sampling interval function d(x) when Xi = x is observed.
Reynolds (1989) showed that the use of two sampling intervals spaced as apart as possible
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is optimal in VSI procedures. In this paper, we also consider VSI procedures with two sam-
pling time intervals d1 and d2 ( d1 < d2 ). Amin and Letsinger (1991) described general
procedures for VSI scheme and examined switching behavior and runs rules for switching
between different sampling intervals on univariate X̄ -chart.

The original work on multivariate control chart was introduced by Hotelling (1947). Alt
(1984) reviewed much of the study on multivariate control charts. Woodall and Ncube (1985)
considered a single multivariate CUSUM procedure for monitoring the means of multivariate
normal process. Lucas and Saccucci (1990) evaluated the properties of an EWMA scheme to
monitor mean of normally distributed procee, and a robust EWMA by using Markov chain
approach. Many authors concluded that the properties of EWMA schemes are similar to
those of CUSUM schemes (see, Chang and Kwon, 2002; Kwon and Chang, 2006; Reynolds
et al., 1990; Vargas et al., 2004).

Most of the studies on multivariate control charts have been concentrated on monitoring
mean vector of multivariate normal process. Often, the shifts in the components of dispersion
matrix for the related quality variables are often important.

In this paper, we investigate the properties of multivariate VSI control charts for monitor-
ing dispersion matrix Σ in terms of ATS and ANSS where the target process mean vector µ
remained known constant. And we also investigate the ANSW of the proposed chart.

2. Description of some control procedures

Suppose that p quality characteristics of interest represented by the random vector X =
(X1, X2, · · · , Xp)′ and X has a multivariate normal distribution with mean vector µ and
dispersion matrix Σ. We obtain a sequence of random vectors X1, X2, · · · to judge the state
of the process where Xt = (X ′t1, · · · , X

′
tn)′ is an observation vector of each sampling time

t and Xtj = (Xtj1, · · · , Xtjp)′. Let θ0 = (µ
0
,Σ0) be the known target process parameters

for θ = (µ,Σ) of related multiple quality variables, where θ0 is represented as

µ0 =


µ10

µ20

...
µp0

 and Σ0 =
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2.1. Evaluating sample statistic

The general multivariate statistical quality control chart can be considered as a repet-
itive tests of significance where each quality characteristic is defined by p quality vari-
ables X1, X2, · · · , Xp. Therefore, we can obtain a sample statistic for momitoring variance-
covariance matrix Σ by using the likelihood ratio test (LRT) statistic for testing H0 : Σ = Σ0

vs H1 : Σ 6= Σ0 where target mean vector of the quality variables µ
0

is known. The regions
above the upper control limit (UCL) corresponds to the LRT rejection region. For the i th
sample, likelihood ratio λi can be expressed as
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Let TVi be −2 lnλi. Then

TVi = tr(AiΣ−1
0 − n ln |Ai|+ n ln |Σ0|+ np lnn− np (2.1)

and, we use the LRT statistic TVi as the sample statistic for Σ. If the sample statistic TVi
plots above the UCL, the process is deemed out-of-control state and assignable causes are
sought.

2.2. ATS and ANSW of VSI procedure

In FSI control chart, ti + 1− ti, the length of sampling interval between sampling times,
is constant for all i(i = 0, 1, · · · ). But for a VSI chart, the sampling times are random
variables and ti + 1 − ti is a function of chart statistic and depends on the past sample
informations X1, X2, · · · , Xi. For VSI charts, the time required for the chart to signal is not
a constant multiple of the run length. To evaluate the performance of a VSI control chart,
it is necessary to obtain time and number of samples separately. Therefore, we use ATS and
ANSS for evaluating and comparing the properties of the FSI and VSI charts.

For VSI chart, the sampling times are random variables and the sampling interval de-
pends on the past sample informations of X1, X2, · · · , Xi. Reynolds (1989) investigated the
theoretical aspects of a VSI one- and two-sided Shewhart charts.

To implement two sampling interval VSI control scheme, the in-control region is divided
into 2 regions I1, I2 where Ii is the region in which the sampling interval di is used (i = 1, 2).
In this paper, we assume that the VSI chart is started at time 0 and the interval used before
the first sample, is a fixed constant, say d0. Then the ANSS and ATS can be expressed as

ANSS = 1 + ψ1 + ψ2 and ATS = d0 + d1ψ1 + d2ψ2, (2.2)

where ψi is the expected number of samples before the signal.
The VSI procedures have been shown to be more efficient when compared to the cor-

responding FSI procdures with respect to the ATS. But, frequent switching between the
different sampling intervals d1 and d2 can be a complicating factor in the application of con-
trol charts with VSI procedures. Therefore, it is necessary to define the number of swiches
(NSW) as the number of swiches made from the start of the process until the chart signals,
and let ANSW be the expected value of the NSW.

The ANSW can be obtained as follows

ANSW = ARL · P (swich). (2.3)

And, the probability of swich is given by

P (swich) = P (d1) · P (d2|d1) + P (d2) · (d1|d2), (2.4)

where P (di) is the probability of using sampling interval di, and P (di|dj) is the conditional
probability of using sampling interval di in the current sample given that the sampling
interval dj (dinedj) was used in the previous sample.
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3. Shewhart control chart

The Shewhart chart has a good ability to detect large changes in monitored parameter
quickly and is easy to implement the process. However, the Shewhart chart is slow to detect
small or moderate changes of the parameters.

The control limits for the FSI Shewhart chart based on the LRT statistic TVi would be
set by using percentage point of TVi, and the chart signals whenever

TVi ≥ hTV (S). (3.1)

And for VSI Shewhart chart based on TVi, suppose that the sampling interval;

d1 is used when TVi ∈ (gTV (S), hTV (S)],
d2 is used when TVi ∈ (0, gTV (S)],

where gTV (S) <= hTV (S) and d1 < d2.
Since it is difficult to obtain the exact distribution of LRT statistic TVi, the design param-

eters gTV (S) and hTV (S) can be obtained to satisfy a desired ATS and ANSS by simulation.

4. EWMA control chart

For FSI EWMA chart based on LRT statistic TVt can be constructed as

YTV,t = (1− λ)YTV,t−1 + λTVt, (4.1)

where YTV,0 = ω(ω ≥ 0) and 0 < λ ≤ 1. This chart signals whenever YTV,t > hTV . When
the smoothing constant λ is 1, this EWMA chart changes to Shewhart chart.

Since it is difficult to obtain the exact distribution of chart statistic YTV,t, the performances
of this chart can be evaluated by simulation when the parameters of the process are on-target
or changed. And the process parameter hTV can be obtained to satisfy a specified ANSS.

And for VSI EWMA chart based on TVi, suppose that the sampling interval;

d1 is used when YTV,i ∈ (gTV (E), hTV (E)],
d2 is used when YTV,i ∈ (0, gTV (E)],

where gTV (E) <= hTV (E) and d1 < d2. The design parameters gTV (E) and hTV (E) can be
obtained to satisfy a desired ATS and ANSS by simulation.

5. Concluding remarks

The properties of proposed charts are determined by the choice of the process parameters
λ, h, g, d1, d2. For the purposes of comparison and evaluation of different FSI and VSI charts,
all charts being considered were set up so that the ANSS and ATS are 200.0 when µ = µ

0
,

d0 = 1 and the sample size for each variable was five for p = 3 and 4. For simplicity in our
computation, we assume that the target mean vector µ

0
= 0′, all diagonal and off-diagonal

elements of Σ0 are 1 and 0.3, respectively. And we let that the sampling interval of unit
time d = 1 in FSI chart and two sampling intervals used as d1 = 0.1 and d2 = 1.9 in VSI
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chart. After the smoothing constants of the proposed EWMA charts have been determined,
the design parameters g′s and h′s and the ANSS, ATS and ANSW values were calculated by
simulation with 10,000 runs. And, for VSI chart, the amount of switching for the different
charts can also be compared.

Since the performance of the charts depends on the components of Σ, it is not possible
to investigate all of the different ways in which Σ could change. Hence, we consider the
following typical types of shifts for comparison in the process parameters.

1. Vi: σ10 of Σ0 is increased to [1 + (4i− 3)/10].

2. Ci: ρ120 and ρ210 of Σ0 are changed to [0.3 + (2i− 1)/10].

3. (Vi, Ci) for i = 1, 2, 3.

4. Si: Σ0 is changed to ciΣ0 where ci = [1 + (3i− 2)/10]2.

The properties and comparison of the proposed procedures are given in Table 5.1 through
Table 5.3. From the numerical results, we found the following properties. VSI schemes are
more efficient than FSI schemes in terms of ATS.
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Figure 5.1 ATS for the proposed charts (p = 3)

The results in Table 5.2 and Table 5.3 show that smaller smoothing constant λ is more
efficient in detecting small shifts of the parameters in terms of ANSS and ATS.

And, we also found that the EWMA procedures exhibit far fewer switches when compared
to the Shewhart procedure. Also, it was established that smaller values of λ for EWMA
procedures will reduce the ANSW between two sampling intervals, respectively. The optimal
selection of λ depends on the size of the shifts to be detected quickly.
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Table 5.1 Properties of the Shewhart chart for Σ

p = 3 p = 4
types of shift ANSS ATS ANSW ANSS ATS ANSW

in-control 200.0 200.0 100.12 200.0 200.0 99.94
V1 186.2 183.2 93.24 192.3 190.2 96.09
V2 35.2 26.2 16.21 68.7 54.5 32.52
V3 6.9 4.1 2.66 13.6 8.0 5.38
C1 191.4 189.1 95.8 194.6 193.0 97.20
C2 133.7 116.6 65.58 157.8 144.1 78.19
C3 56.8 31.2 21.25 90.0 61.2 39.26

(V1, C1) 181.2 177.0 90.71 188.9 185.8 94.36
(V2, C2) 30.4 21.4 13.52 58.3 44.0 26.99
(V3, C3) 5.5 2.7 176 10.3 5.1 3.49
S1 164.1 156.9 82.00 176.1 169.2 87.88
S2 18.3 10.8 7.22 29.0 16.7 11.27
S3 3.5 1.8 1.08 4.4 1.9 1.21
S4 1.7 1.1 0.04 1.7 1.1 0.45

Table 5.2 Properties of the EWMA chart for Σ(p = 3)

λ = 0.1 λ = 0.2 λ = 0.3
types of shift ANSS ATS ANSS ANSS ATS ANSW ANSS ATS ANSW

in-control 200.0 200.0 27.46 200.1 200.0 40.48 200.0 200.0 50.29
V1 170.7 164.7 23.08 173.0 166.6 34.84 176.1 170.4 44.25
V2 29.5 29.0 3.26 24.9 18.6 4.21 24.8 16.5 5.34
V3 11.8 14.0 2.13 8.1 7.5 2.11 6.9 5.4 2.05
C1 178.8 174.1 24.24 181.3 176.4 36.64 183.9 179.6 46.21
C2 77.8 64.6 8.71 84.2 63.8 15.29 93.7 71.6 21.93
C3 24.4 23.7 2.48 21.3 13.6 2.89 23.3 11.3 3.58

(V1, C1) 157.9 150.4 21.10 162.8 154.3 32.70 167.4 159.6 41.97
(V2, C2) 25.9 26.1 2.92 21.2 15.9 3.57 20.9 13.6 4.39
(V3, C3) 9.7 11.7 2.02 6.5 6.2 1.95 5.5 4.3 1.82
S1 132.2 121.3 17.25 138.0 125.0 27.36 143.5 131.0 35.72
S2 18.0 19.6 2.38 13.5 10.8 2.56 12.7 8.2 2.78
S3 7.6 9.2 1.97 4.9 4.8 1.84 4.1 3.3 1.61
S4 4.4 5.4 1.76 2.9 2.8 1.39 2.3 1.9 1.03

Table 5.3 Properties of the EWMA chart for Σ(p = 4)

λ = 0.1 λ = 0.2 λ = 0.3
types of shift ANSS ATS ANSS ANSS ATS ANSW ANSS ATS ANSW

in-control 200.0 200.0 27.29 200.0 200.0 40.39 200.0 200.0 50.28
V1 181.1 177.0 24.49 184.0 179.5 37.03 186.0 181.9 46.71
V2 44.6 41.6 4.51 41.7 30.6 6.85 44.5 30.5 9.60
V3 17.7 20.8 2.32 12.5 11.2 2.46 11.2 8.2 2.63
C1 186.4 183.0 25.23 189.2 185.7 38.15 190.0 186.9 47.76
C2 104.0 89.9 12.34 113.9 93.6 21.54 123.4 102.8 29.73
C3 37.7 34.4 3.26 36.9 23.0 4.86 42.7 22.8 7.34

(V1, C1) 172.6 166.6 23.17 176.6 170.1 35.45 179.7 173.7 45.09
(V2, C2) 38.3 36.7 3.78 34.6 25.1 5.46 36.9 24.0 7.59
(V3, C3) 14.5 17.6 2.14 9.9 9.2 2.18 8.6 6.4 2.20
S1 142.4 131.9 18.50 149.5 136.9 29.65 155.6 143.6 38.73
S2 21.9 24.1 2.46 16.9 13.2 2.70 16.4 10.1 3.13
S3 9.4 12.0 2.01 6.0 6.1 1.97 4.9 4.1 1.85
S4 5.5 7.2 1.86 3.4 3.6 1.68 2.7 2.4 1.33
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