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A VARIABLE SELECTION IN
HETEROSCEDASTIC DISCRIMINANT
ANALYSIS : GENERAL PREDICTIVE

DISCRIMINATION CASE!
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ABSTRACT

This article deals with variable selection problem under a newly formed pre-
dictive heteroscedastic discriminant rule that accounts for multiple homogeneous
covariance matrices across the K multivariate normal populations. A general ver-
sion of predictive discriminant rule, a variable selection criterion, and a criterion for

stopping with further selection are suggested. In a simulation study the practical
utilities of those considered are demonstrated.

1. INTRODUCTION

Gnanadesikan and Kettenring(1984) classified discriminant analysis as one of the most
useful statistical techniques for social problems. Widespread prevalence of the discrimi-
nant problem in many fields has seen the development of a plethora of new approaches for
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discriminant analysis. Among them, two major approaches, namely estimative and pre-
dictive methods, are well accepted and commonly used. Practical differences of them are
illustrated by Aitchison and Donsmore(1975). Aitchison, et al.(1977) compared the two
methods, and then advocated the use of predictive methods when the population distribu-
tion can be transformed to multinormality. They also suggested the use of heterosecdastic
predictive method when there is a high possibility that the covariance matrices may differ
appreciably across the populations.

In multiple discriminant analysis, it is common practice that once data set rejects the
test for equality of covariance matrices we directly adopt the heteroscedastic discriminant
analysis which assumes heterogeneous covariance matrices across the populations. In
practice this is not always the case, since one would expect that measurement of the
same characteristic in different populations would give rise to at least more than one very
similar even if not identical covariance matrices groups, namely multiple homogeneities,
among them( See Kim, 1991, for example). This gives rise to three major problems in
discriminant analysis: problem of detecting the multiple homogeneities from a given data
set, that of constructing discriminant rule for the case of the multiple homogeneities, and
that of variables selection. Among them, the first problem can be circumvented by the
test developed by Kim(1991). Thus, to make discriminant analysis possible even for the
case of the multiple homogeneities, we need to solve the remaining two problems.

The purpose of this paper is to suggest a predictive method which not only resolves
those remaining problems but also handles the homo and the heterogeneous covariances
cases and to show the suggested method is likely to yield the more reliable results than
the most commonly used method( heteroscedastic predictive method, Cf. Aitchison, et
al., 1977). In the next section we develop a general version of predictive heteroscedastic
discriminant rule that accounts for the multiple homogeneities. Under the possibility of
the multiple homogeneities in the population distributions, some fundamental aspects of
the discriminant variable selection problem such as the criterion for selection of variables
and the criterion for stopping with further selection are considered and suggested in
Section 3. In Section 4, by a simulation study, the suggested method is compared with
the most commonly used method. The comparisons are done in terms of the performance
of the discrimination and the variables selection under the multiple homogeneities. Some
concluding remarks are given in Section 5.

2. A GENERAL PREDICTIVE DISCRIMINANT RULE

When we have a multiple homogeneities across the population covariance matrices, it is
natural to use a discriminant rule which takes good care of the situation. Unfortunately,
we don’t have a formalized discriminant rule for the multiple homogeneities. In this



A Variable Selection in Heteroscedastic Discriminant Analysis 3

section we formmulate a general predictive heteroscedastic discriminant rule, in a sense
that, it is not only for homo and heteroscedastic discrimination but also for the multiple
homogeneities.

Suppose we have K populations II;, : = 1, -+, K each specified by a p-variate normal
density n{ - | 0; ), 0; = ( pi, £; ), with m multiple homogeneities across the covariance
matrices so that underlying populations model is

M* - 21="'=Ek172k1+1:"':2k1+k2 ,"',Ek‘ :"':EK,

m—1 m
]\‘.* = Z kj,]\’ = Z ]C]', (21)
1=1 i=1

and suppose, for each of the populations, we have p x N; training sample data matrix X;

based on N; independent observations. If we let z be a new observation to be assigned to
K

one of the K populations, with prior probability ; of belonging to II;, Z m; = 1. Then
i=1

the probability Pr( z € II; | z, © ), that we would assign to population II; for a case with

observation vector z, would be computed from Bayes’ formula as

K
Pr(z€ll;|2,0)occmP(z]| 0,1 ), where ©® = | J 0.. (2.2)
iz=1
K
In practice we never know © but we usually have training samples X = U X;. A

i=1
method that replaces the probability density function P(z | ©,II;) on the right side of
(2.2) by :

f= | X6 = fo P(2 | ©,11:)g(0© | X)dO, (2.3)

has known to be as predictive method(Geisser, 1964; Fatti, et al., 1982, among others).
Here g(© | X) denotes the posterior desity of ©.

Lemma 1. If the underlying K populations model is M*, and if the prior distribution
of © is diffuse, the predictive density of z in (2.3) is

flz | X, 00) = St,{N(t) = ki, Xi, (1 + 1/N;)S(k0)}, (24)

a(t) <1 <b(t), t=1,---,m,

where X and S; are sample mean and covariance matrices of i-th training sample, respec-
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b(t) b(t)
tively and N(2) = > Ni, S(ke) = D (Ni=1)Si/(N(t) — kt),a Zk + 1,b(t) =

i=a(t) 1=a(t)

Z k;. Here St,(-,-,+) denotes a p-dimensional variate t density function defined on X =
=1

RP by the density at z (Cf. Kim, 1991).

Proof. Ifwelet Ly =, - ,=Syy = 2(k;) t=1,---,m, under the diffuse prior
(t) (t)

m

o<H|z ) |~/ (2.5)

the posterior density of © is

910 1) o T | S(k) |00 7= exp{—é r(E(k)T Ok, (26)
b(t)
where C(k) = (N(t) — k)S(k) + 3 Ni(X; — ;) (Xs — w5
j=al(t)

Without loss of generality, we assume that the probability density P(z | ©,II;) =
n(z | pi, (k1)) such that £; = £(k;). Then, from the definition (2.3), integrating out all
parameters © except for 0; = (y;, £(ky)) that relate to the distribution of z, we have

o | X,TL) o [ [ | (k) [FOW0-R42492 eapl—Lir[S(ky)~ As)O (k1) Ops,
where Aj = (N(1) — k1)S(ky) + Ni(Xi — i) (X = ) + (2 = )z — )

Noting that if the integrand is viewed as a function of X(ky), it is proportional to a
inverted Wishart density(Cf. Press, 1982), the integration over X(k;) is

£z | X0 o] By [P L1y — By (= )} VR g,

where (N; + 1)B; = (N(1) = k1)S(k1) + Ni(z — Xi)(z = Xi)'/(N; + 1).

Now the integrand is proportional to a p-dimensional variate t density. Integrating gives
£ 1 X105 o {1+ i (2 = Xo)S(ha) 7z = X}tz 2.7)
This is the Kernel of St,{N(1) — ki, X;,(1 + 1/N;)S(k1)}, so that if we apply this

result to the general z from II; with covariance ¥; = X(k,), a(t) i< b(t), t=1,---,m
we get (2.4). Therefore we prove the lemma.&

?
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Corollary 1. Under the assumptions of lemma 1, if a prior probability of belonging
K

to i-th population II; is #;, Z 7; = 1, the predictive discriminant rule is to classify a new
i=1
observation z into a population which satisfies

Maz mf(z|X,II;), i=1,--- K. (2.8)

Proof.  Apply Bayes theorem to the predictive probability density (2.4) for classi-
fying a new observation z into Il;. This gives the posterior probability of z belonging to II;;

Prizell; | z,m) < = f(z | X,1I;). (2.9)

Thus (2.8) is equivalent to the usual posterior odds ratio criterion for optimum classifica-
tion(Cf. Geisser, 1964).#

The results above can be applicable for any type of multiple homogeneites among K
population covariance matrices if we reconstruct(or exchange) the subscripts involved in
the multiple homogeneities at hand to conform with those of M*. Furthermore, it can
be easily shown that (2.4) and (2.8) give exactly the same homo and heteroscedastic
predictive discriminant rule(Cf. Aitchison, et al. |, 1977) when we put M* with sets of
subscripts ky =K, ky=--- =k, =0 and &k =--- = k,, = 1, respectively. Particularly,
in the latter case, (2.4) gives the predictive density used for heteroscedastic predictive
discriminant rule;

f(z | X, IL) = St{Ni — K, X, (1+1/N;)S;}. (2.10)

3. VARIABLE SELECTION

In any application of discriminant analysis, some variables will show greater varia-
tion between populations, relative to their variation within populations. The question
then arises how we can determine the individual contribution of variables to the over
all discrimination so that we can drop any of those variables from the analysis without
appreciably increasing the error rate. Since Rao(1965) provided the largest F criterion for
additional discrimination, there have been many variable selection criteria for multiple
discriminant analysis. Among them, Wilk’s A, minimum Mahalanobis’ D?, likelihood ra-
tio( Cf. Fatti, et al. 1982), and error rate criterion (Cf. Habbema and Hermans, 1977) can
be illustrated. However, those criteria are based upon the assumptions that covariance
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matrices are homogeneous or heterogeneous across the populations. Accordingly, except
for an error rate criterion considered below, those are not applicable to our variable selec-
" tion situation that assumes the multiple homogeneities among the population covariance
matrices.

If we let Pr(IL; | II;) be the predictive probability that a new observation z has been
classified as belonging to I1; when in fact it belongs to II;, under the classification rule in
(2.8), we have a predictive probability of misclassification(the error rate) defined by

KN

E =1 - ) Pr(Il; | IL), (3.1)
i=1
where
CPr(IL | IL) = m [, f(z | X, 1i)dz,
R = {z : mf(z | X,IL) > mef(z | X, 1), = # €},
the classification region to Il;, ¢, £ = 1,---, K.

In order to find the optimal subset of variables when using the error rate criterion(3.1),

K
one has to compute the estimated rate of correct classification P, = Z Pr(II; | I1;) for all

subsets of p discriminant variables, and choose the subset having ma';ilmal estimated rate
of correct classification. This is called exhaustive enumeration procedure for the variable
selection. When the investigation of all possible subsets takes too much computer time,
a stepwise approach can be used leading to a suboptimal subset.

K
To estimate the error rate E on the basis of the training samples X = U X;, the most

obvious estimate is the apparent error rate which is the proportion of 1ol;served €errors
made by (2.8) on its own training samples X. Usually the apparent error rate tends to
be smaller than the error rate(Cf. Efron, 1983), because the same data have been used
both to construct and evaluate (2.8). The leaving-one-out method(a cross-validation)
circumvents this difficulty by removing each observation from the data set used in its own
discrimiation. Let X(ij) be the training samples with j-th observation vector z;; of i-th
data matrix X; removed, and let Y;; indicate the correctness of classifying z;; based upon
the discriminant rule (2.8);
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V. _{ 0 if maa mof(ay; | X(15), o) = mif (x| X(i5), 1)
1% R

1 otherwise.

Then the estimated error rate based on the leaving-one-out method is
E= 522 Y (3.2)

K
where £ = 1 — PC, t =1,---,K, j=1,---,N;, N = ZN,: A good reference of
=1

this method is Lachenbruch and Mickey(1968), and Efron(1983) showed that it provides a
nearly unbiased estimate of the error rate which is closely related to bootstrap estimate of
the error rate. An advantage of the error rate criterion, besides its direct interpretation,
is that it naturally provides a stopping criterion. Formally, this criterion stops selection
at step q if, for a given threshold value A,

A

PuS;) = PS;m) 2 A, j=1,---q (3.3)
while
P(Ses1) — Pu(S,) < &,

where the subset S; is optimal with respect to the rate of correct classification among

all subsets of size j considered, and Pc(Sj) denotes the corresponding estimated correct
classification rate.

4. SIMULATION STUDIES

A sampling experiments was performed to compare the performance of the two het-
eroscedastic predictive methods under the presence of the multiple homogeneities: one in
the most commonly used method(heteroscedastic predictive method by Aitchison, et al.,
1977) which estimates the probability density function in (2.3) by (2.10) and the other by

(2.4) as suggested in Section 2. We will call the latter method as the suggested predictive
method.

For a comparison we consider 21 discrimination situations with three populations
I ~ Ny(pi, E), 1 =1, 2, 3, with E; # ¥, = ¥3 = E. Using a non-singular linear
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transformation H such that HX,H’' = I, and HXH = D, a diagonal matrix, 30 samples
for each of simulation characterized by the set

{/tlaﬂ27/L31H9DapaN1 = N2 :N3 = J}

were generated. These are done with three different experiments designed to see the
discrimination effect of location parameters. These experiments are set by changing the
values of population mean vectors;

Table 1. Population Mean Vectors

Mean Vectors I 72 3

Experiment 1 | ( 0,-3,0,-3,0,-3,0) (-3,0,-3,0,-3,0,-3)  (1,1,1,1,1,1,1)
Experiment 2 | (0,-3,0,-3,0,-3,0) (-3,5,-3,5,-3,5,-3)  (1,1,1,1,1,1,1)

Experiment 3 | (0, -3,0,-3,0,-3,0) (-3,5-3,5,-3,5,-3) 10x(1,1,1,1,1,1,1)’

Table 2 provides details of the simulation situations in each experiment which has
been used to assess the relative merits of the two methods.

Table 2. Simulated Situations Used in Each Experimental Comparison

p| J |H D m | p2 | pa

315,10,20| Q3| D3 Hi(3) | H2(3) | H3(3)
d 10, 20 Qs | Ds Ba(s) | H2(5) | H3(5)

7 10, 20 Q D H1 Ha2 H3

Note: D = diag( 2, 3, 4, 5, 6, 7, 8 ), Q is the same matrix used in Press(1982, p.275).
Note: D; and Q;, i = 3, 5, denote principal submatrices with first i diagonal elements of
D and H respectively and py(), pa(), and psu) are i x 1 subvectors composed of first i
components of uy, po, and pg3, respectively.



A Variable Selection in Heteroscedastic Discriminant Analysis

4.1 Comparison of the Two Methods

Each simulated training set, say {zp; : h =1,---,30,i=1,---,3,7=1,---,J} gives
rise to two assessments of log differences: the differences between the true one p( z | ©,II;
) in (2.2) and one for each of the two in (2.4) and (2.10). The measure of performance of
each predictive function is the mean log absolute deviation( MLAD ) from the true one

MLAD = g5 %5 log | f(zhii | X, 1) — plaai; | ©,1L) |, (4.1)

Since the measure (4.1) is invariant with respect to location parameter, we calculate this
measure based only on the first experiment, and results are given in Table 3.

Table 3. The Performance of The Two Predictive Functions

p| J | MLAD1 | MLAD2 | MLAD1-MLAD2

51 -6.979 -6.901 -.078
310 -7.130 -7.097 -.033

20| -6.692 -6.668 -.024
5110 | -11.871 | -11.446 -.125

20 | -10.721 | -10.679 -.042
7110 -16.264 | -16.110 -.154

20 | -15.111 | -15.023 -.088

Note: MLAD1 denotes MLAD calculated by the general predictive density in (2.4).
Note: MLAD?2 denotes MLAD calculated by the heteroscedastic predictive density in
(2.10).

Table 3 shows that the values of MLADI1 are uniformly smaller than those of MLAD?2.
This implies that, under a multiple homogeneities, the general predictive density (2.4)
better estimates the true one in (2.2). The two discriminant methods are then compared
in terms of the error rates(misclassification rates). The error rates for each method are
estimated by the leaving-one-out method. The advantage of this estimation method is
well illustrated in Lachenbruch and Micky(1968).
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Table 4. Estimated Error Rates ( averaged over 30 replicates )

Experiment 1 Experiment 2 Experiment 3
p | J | method 1 | method 2 | method 1 | method 2 | method 1 | method 2
5 .505 731 .345 627 120 495
310 .395 464 271 321 .063 147
20 308 311 188 213 040 .085
510 .348 589 130 .286 .008 157
20 .230 331 .052 111 .005 .060
7110 .243 .586 ' .045 205 .002 .169
20 224 340 .026 .026 .005 .045

Note: Method 1 denotes the suggested method using (2 . 4) and method 2 denotes the
heteroscedastic predictive method using (2 . 10). Note: Estimated error rate = ( number
of misclassified samples by leaving-one- out method) / ( total number of generated sam-
ples in each experiment situation ).

Several points were noted in constructing this table. First, for all simulation situations,
the estimated error rate of the suggested predictive method is lower than that of the most
commonly used method. Second, differences in the error rates between them get bigger
when sample size gets smaller. Finally, the suggested method gives better results when
dimensionality is large and did better when centroid distance between populations gets

bigger.

4.2 Comparison in Variables Selection

When multiple homogeneities are presented in the covariance matrices, as demon-
strated by the preceding examples, the suggested predictive method( method 1) performs
better than the most commonly used method(method 2). Now we further develop a study
to see difference in the variable selection between the two methods by estimating the error
rate in (3.1).

The following example is based on a sampling experiment generated from the simula-
tion situation with p=7 and J=20 in the first experiment. So that these data consist of
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three populations with 20 sample elements per population and 7 variables. For each of
the two predictive methods, using the stepwise procedure and the total enumeration pro-
cedure, the subscts of variables are selected at each stage. The criterion (3.3) for stopping
with further selection of variables is used for the stepwise procedure. Table 5 and Table 6
give "stepwise results” and "exhaustive enumeration results”, respectively. Here we used
the leaving-one-out method to calculate Pc(Sj)’s for (3.3) and the stepwise procedure was
forced to take seven selection steps by putting A = -1.

Table 5. Variables Selected by Stepwise Procedure
Method 1 Method 2

Stage(j) | Variables E(S;) | Variables E(S;)

1 6 367 |7 367
2 67 300 |67 283
3 367 250 167 267
4 1367 250 1467 250
5 13467 A83 14567 .250
6 123467 200 124567 333
7 1234567| 200 (1234567 .333

Note: estimated error rate E(Sj) =1-P(S;),7=1,---,1.

Table 6. Variables Selected by Exhaustive Enumeration Procedure
Method 1 ‘ Method 2
Subset Size(j) | Variables E(S;) | Variables E(S;)

1 6 367 | T 367
2 24 283 |67 283
3 124 JA67 1127 217
4 1235 183 11467 .250
S 12347 167 114567 .250
6 123457 183 1123467 .250
7 1234567 200 {1234567| .333

Note: * denotes the optimal subset of each method.

This example shows that the most commonly used method(heteroscedastic predictive
method) misleads the variable selection when the multiple homogeneities exist across the

11
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populations. Also, the estimated error rates in the tables evidently reveal the superior
performance of the suggested predictive method in selecting variables.

5. CONCLUDING REMARKS

When a discriminant situation requires the statistician to provide plausibility assess-
ment for the possible populations, we have seen that total ignorance of the multiple homo-
geneities across the covariance matrices may lead to severe distortion of the assessment.
Noticing that the suggested predictive method also embraces homo and heteroscedas-
tic predictive discriminant procedures, the theoretical consideration of Section 2 and 3
,and limited but comparative simulation studies of Section 4 can be considered as strong
supports for the use of the suggested method.

However the suggested method’is only applicable to the case when the exact structure
of the multiple homogeneities among K covariance matrices is known beforehand so that
we can construct M™ in (2.1). This problem may be easily solved if we adopt the multiple
homogeneities test by Kim(1991) in the first stage of discriminant analysis.
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