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Abstract

We consider a general compound Poisson risk model in which the premium rate is
surplus dependent. We analyze the joint distribution of the surplus immediately before
ruin, the deficit at ruin and the time of ruin by solving the integro-differential equation
for the Gerber-Shiu discounted penalty function.

Keywords: Compound Poisson model, Gerber-Shiu discounted penalty function, vari-
able premium rate.

1. Introduction

We consider a general compound Poisson risk model in which the premium rate is depen-
dent on the current surplus, i.e., the premium rate is a function of the surplus. It models the
case where the company raises the premium once the surplus goes below some threshold,
and/or it lowers the premium if the surplus goes above another threshold for attracting
more customers, and/or it pays out dividend at a rate if the suplus is above some threshold
(Asmussen, 2000). Let u ≥ 0 be the initial surplus. The aggregate claims constitute a com-
pound Poisson process S(t), given by the Poisson parameter λ and individual claim amount
distribution function G(x) with G(0) = 0. That is, S(t) is described by

S(t) =

N(t)∑
i=1

Xi,

where {N(t), t ≥ 0} is a Poisson process with mean λ per unit time and X1, X2, · · · are
independent and identically distributed random variables with common distribution G(x).
Then the surplus process {U(t), t ≥ 0} satisfies

U(t) = u+

∫ t

0

p(U(s))ds− S(t), t ≥ 0,
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where p(x) is the premium rate function. As usual, the time of (ultimate) ruin is defined as
T := inf{t|U(t) < 0, t ≥ 0}, where T =∞ if ruin does not occur in finite time.

The Gerber-Shiu discounted penalty function (Gerber and Shiu, 1998) is defined as

m(u, δ) := E[e−δTw(U(T−), |U(T )|)I(T <∞)|U(0) = u], (1.1)

where w(x, y), x ≥ 0, y ≥ 0, is the penalty at the time of ruin and I(E) denotes the
indicator function assigning 1 if the event E occurs and 0 otherwise. It is well known that
this discounted penalty function provides a unified approach to three important random
variables: the surplus immediately before ruin U(T−), the deficit at ruin |U(T )|, and the
time of ruin T (Gerber and Shiu, 1998; Lin et al., 2003).

Various stochastic processes are applied to analyze the characteristics of the risk processes
in the insurance models (Klugman et al., 2004; Kim and Kim, 2009; Hyeon and Cha, 2010).
Asmussen (2000) discussed a few issues around the variable premium rate. Rong and Li
(2004) obtained the ruin probability in the Cox risk model with variable premium rate and
Lin and Pavlova (2006) studied the Poisson risk model in which the premium rate is a
step function of the surplus. By Lin and Sendova (2008), it was extended into the compound
Poisson risk model with variable premium rate. They derived the integro-differential equation
for the Gerber-Shiu discounted penalty function such as

p(u)
∂

∂u
m(u, δ) = (λ+ δ)m(u, δ)− λ

∫ u

0

m(u− y, δ)dG(y)− λζ(u), (1.2)

where

ζ(x) :=

∫ ∞
x

w(x, y − x)dG(y)

is the conditional expected penalty given that the surplus immediately prior to the time of
ruin is x. Recently Park and Choi (2011) studied an asymptotic behavior of the finite-time
ruin probability of the compound Poisson model when the initial surplus is large.

In this paper, we solve the above integro-differential equation (1.2) to obtain the Gerber-
Shiu discounted penalty functions m(u, δ) for the risk models with variable premium rate.
And then by using the function m(u, δ), we derive the ultimate ruin probability, the Laplace
transform of the time of ruin, the survival distribution function of the deficit at ruin and
the Laplace transform of the first exit time from [0, α).

2. The Gerber-Shiu discounted penalty function

In this section, we obtain the solution to the integro-differential equation for the Gerber-
Shiu discounted penalty function.

Theorem 2.1 The solution m(u, δ) to the equation (1.2) is given by

m(u, δ) =
1 +

∫ u
0
K∗(x, 0, δ)dx

1 +
∫∞
0
K∗(x, 0, δ)dx

∫ ∞
0

λζ(x)

p(x)

(
1 +

∫ ∞
x

K∗(y, x, δ)dy

)
dx

−
∫ u

0

λζ(x)

p(x)

(
1 +

∫ u

x

K∗(y, x, δ)dy

)
dx, (2.1)

where K∗(x, y, δ) is defined in (2.4).
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Proof : Since

m(u, δ) =

∫ u

0

∂

∂x
m(x, δ)dx+m(0, δ),

we have ∫ u

0

m(u− y, δ)dG(y) =

∫ u

0

∫ u−y

0

∂

∂x
m(x, δ)dxdG(y) +m(0, δ)G(u)

=

∫ u

0

∫ u−x

0

∂

∂x
m(x, δ)dG(y)dx+m(0, δ)G(u)

=

∫ u

0

G(u− x)
∂

∂x
m(x, δ)dx+m(0, δ)G(u).

Substituting the above in (1.2) and dividing both sides by p(u), we have

∂

∂u
m(u, δ)

=
λ+ δ

p(u)

(∫ u

0

∂

∂x
m(x, δ)dx+m(0, δ)

)
− λ

∫ u

0

G(u− x)

p(u)

∂

∂x
m(x, δ)dx

−λm(0, δ)G(u)

p(u)
− λζ(u)

p(u)

=

∫ u

0

δ + λ[1−G(u− x)]

p(u)

∂

∂x
m(x, δ)dx+

δ + λ[1−G(u)]

p(u)
m(0, δ)− λζ(u)

p(u)
.

Then it reduces to

∂

∂u
m(u, δ) = A(u, δ) +

∫ u

0

K(u, x, δ)dxm(x, δ), (2.2)

where

K(x, y, δ) :=
δ + λ[1−G(x− y)]

p(x)

and

A(x, δ) :=
m(0, δ){δ + λ[1−G(x)]} − λζ(x)

p(x)

= m(0, δ)K(x, 0, δ)− λζ(x)

p(x)
. (2.3)

In a manner analogous to that of Harrison and Resnick (1976), we will now let

K1(x, y, δ) = K(x, y, δ), 0 ≤ y < x, δ ≥ 0

and define its iterates recursively as

Kn+1(x, y, δ) =

∫ x

y

Kn(x, z, δ)K1(z, y, δ)dz

=

∫ x

y

K1(x, z, δ)Kn(z, y, δ)dz, 0 ≤ y < x, δ ≥ 0,
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for n ≥ 1. Using the bound K1(x, y, δ) ≤ (δ + λ)/p(x), it follows easily by induction that

Kn+1(x, y, δ) ≤
(λ+ δ)n+1

[∫ x
y

1
p(z)dz

]n
p(x)n!

, 0 ≤ y < x, δ ≥ 0,

for all n ≥ 1. Thus the kernel

K∗(x, y, δ) :=

∞∑
n=1

Kn(x, y, δ), 0 ≤ y < x, δ ≥ 0 (2.4)

is well-defined. Iterating the relation of (2.2) N − 1 times gives

∂

∂u
m(u, δ) = A(u, δ) +

∫ u

0

A(y, δ)

N−1∑
n=1

Kn(u, y, δ)dy +

∫ u

0

KN (u, y, δ)dym(y, δ).

Letting N →∞ and using the dominated convergence theorem, we then have

∂

∂u
m(u, δ) = A(u, δ) +

∫ u

0

A(y, δ)K∗(u, y, δ)dy.

Substituting A(u, δ) from (2.3) into the above equation and then integrating it with respect
to u, we obtain

m(u, δ) = m(0, δ)

(
1 +

∫ u

0

K∗(x, 0, δ)dx

)
−
∫ u

0

λζ(x)

p(x)

(
1 +

∫ u

x

K∗(y, x, δ)dy

)
dx. (2.5)

From the boundary condition that limu→∞m(u, δ) = 0, it follows that

m(0, δ) =

∫∞
0

λζ(x)
p(x)

(
1 +

∫∞
x
K∗(y, x, δ)dy

)
dx

1 +
∫∞
0
K∗(x, 0, δ)dx

(2.6)

which completes (2.1). �

3. Some quantities of interest

The Gerber-Shiu discounted penalty function m(u, δ) of (1.1) can lead to some important
quantities of interest in the risk model. If we let δ = 0 and w(x, y) = 1 for x, y ≥ 0 in (1.1),
then we can obtain the ultimate ruin probability. If δ > 0 and w(x, y) = 1 for x, y ≥ 0, (1.1)
becomes the Laplace transform of the time of ruin. In this section, by varying the transform
parameter δ and the penalty function w(x, y), we derive the ultimate ruin probability, the
Laplace transform of the time of ruin, the survival distribution function of the deficit at ruin
and the Laplace transform of the first exit time from [0, α).
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3.1. The ultimate ruin probability

Asmussen and Petersen (1988) connected this risk model with the dam model with general
release rate by the time-reversion and then they showed that the ultimate ruin probability
ψ(u) := P (T <∞|U(0) = u) can be expressed by

ψ(u) =

∫ ∞
u

f(x)dx,

where f(x) is the stationary density of the dam content x and satisfies the storage equation

f(x) = π0Q(x, 0) +

∫ x

0

Q(x, y)f(y)dy,

where Q(x, y) := λ[1−G(x− y)]/p(x) and π0 is the probability that the dam is empty.
Especially when δ = 0 and w(x, y) = 1 for all x ≥ 0, y ≥ 0, we have ζ(x) = 1−G(x). So

λζ(x)

p(x)
= K(x, 0, 0).

Since ∫ ∞
0

∫ ∞
x

K(x, 0, 0)K∗(y, x, 0)dydx =

∫ ∞
0

∫ y

0

K(x, 0, 0)K∗(y, x, 0)dxdy

=

∫ ∞
0

∞∑
n=2

Kn(y, 0, 0)dy,

the numerator of m(0, 0) with δ = 0 in (2.6) is given by∫ ∞
0

K(x, 0, 0)dx+

∫ ∞
0

∞∑
n=2

Kn(y, 0, 0, )dy =

∫ ∞
0

K∗(x, 0, 0)dx.

Therefore it follows that

m(0, 0) =

∫∞
0
K∗(x, 0, 0)dx

1 +
∫∞
0
K∗(x, 0, 0)dx

. (3.1)

Notice that the ultimate ruin probability ψ(u) is coincident with m(u, 0) in this case. Since∫ u

0

K(x, 0, 0)dx+

∫ u

0

∫ u

x

K∗(y, x, 0)dydx =

∫ u

0

K∗(x, 0, 0)dx,

inserting (3.1) into (2.5) gives

ψ(u) = m(u, 0)

=

∫∞
u
K∗(x, 0, 0)dx

1 +
∫∞
0
K∗(x, 0, 0)dx

.
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3.2. The time of ruin

Assume that δ > 0 and w(x, y) = 1 for all x ≥ 0, y ≥ 0. In this case m(u, δ) becomes

the Laplace transform of the time of ruin. Since ζ(x) = 1−G(x) and λζ(x)
p(x) = K(x, 0, 0), it

follows from (2.5) and (2.6) that

m(u, δ) = E[e−δT |U(0) = u]

= m(0, δ)

(
1 +

∫ u

0

K∗(x, 0, δ)dx

)
−
∫ u

0

K(x, 0, 0)

(
1 +

∫ u

x

K∗(y, x, δ)dy

)
dx,

where

m(0, δ) =

∫∞
0
K(x, 0, 0)

(
1 +

∫∞
x
K∗(y, x, δ)dy

)
dx

1 +
∫∞
0
K∗(x, 0, δ)dx

.

3.3. The deficit at ruin

Let us define the survival distribution function of the deficit at ruin by

D(u, v) := P{|U(T )| > v, T <∞|U(0) = u}.

If we assume that δ = 0 and w(x, y) = 1 for all x ≥ 0, y > v, then we have ζ(x) =∫∞
x
w(x, y − x)dG(y) = 1−G(x+ v). Therefore from (2.5) and (2.6) it follows that

D(u, v) = m(u, 0)

= m(0, 0)

(
1 +

∫ u

0

K∗(x, 0, 0)dx

)
−
∫ u

0

λ[1−G(x+ v)]

p(x)

(
1 +

∫ u

x

K∗(y, x, 0)dy

)
dx,

where

m(0, 0) =

∫∞
0

λ[1−G(x+v)]
p(x)

(
1 +

∫∞
x
K∗(y, x, 0)dy

)
dx

1 +
∫∞
0
K∗(x, 0, 0)dx

.

3.4. The first exit time

For 0 ≤ u ≤ α, we define

Tα := inf{t ≥ 0|U(t) /∈ [0, α)}

to represent the first exit time from [0, α) (Lee, 2007).
Then, the Laplace transform of Tα under the condition that U(0) = u is given by

φα(u, δ)

:= E[e−δTα |U(0) = u]

= E[e−δTαI(U(Tα) < 0)|U(0) = u] + E[e−δTαI(U(Tα) = α)|U(0) = u].
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If we further define

T 1
α =

{
∞ if U(Tα) = α
Tα if U(Tα) < 0

and

T 2
α =

{
Tα if U(Tα) = α
∞ if U(Tα) < 0,

then we obtain

φα(u, δ) = E[e−δT
1
α |U(0) = u] + E[e−δT

2
α |U(0) = u].

For δ > 0,

E[e−δT
1
α |U(0) = u] = E[e−δT

1
αI(T 1

α <∞)|U(0) = u]

:= m(u, δ)

with w(x, y) = 1 for all x ≥ 0, y ≥ 0.
From (2.5) and the boundary condition that m(α, δ) = 0 for all δ ≥ 0, it follows that

E[e−δT
1
α |U(0) = u] = m(0, δ)

(
1 +

∫ u

0

K∗(x, 0, δ)dx

)
−
∫ u

0

K(x, 0, 0)

(
1 +

∫ u

x

K∗(y, x, δ)dy

)
dx,

where

m(0, δ) =

∫ α
0
K(x, 0, 0)

(
1 +

∫ α
x
K∗(y, x, δ)dy

)
dx

1 +
∫ α
0
K∗(x, 0, δ)dx

.

Similarly, for δ > 0,

E[e−δT
2
α |U(0) = u] = E[e−δT

2
αI(T 2

α <∞)|U(0) = u]

:= m(u, δ)

with

w(x, y) =

{
1 x = α, y = 0
0 otherwise.

We note that ζ(x) = 0 in this case. Using the boundary condition that m(α, δ) = 1 for all
δ ≥ 0 in (2.5) we have

E[e−δT
2
α |U(0) = u] =

1 +
∫ u
0
K∗(x, 0, δ)dx

1 +
∫ α
0
K∗(x, 0, δ)dx

.

Notice that here

m(u, 0) =
1 +

∫ u
0
K∗(x, 0, 0)dx

1 +
∫ α
0
K∗(x, 0, 0)dx

is the probability that the surplus reaches α before it becomes empty, starting from u.
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4. Example

Suppose that the premium rate is constant, that is, p(x) = p. Then

K(x, y, δ) = K(x− y, 0, δ)

=
δ + λ[1−G(x− y)]

p
.

Define

Hδ(x) :=

{ ∑∞
n=0W

∗n
δ (x) x ≥ 0

0 x < 0,

with Wδ(x) :=
∫ x
0
δ+λ[1−G(y)]

p dy, ∗n being the n-fold recursive Stieltjes convolution, and

W ∗0δ being the Heaviside function. Then we have

1 +

∫ x

0

K∗(y, 0, δ)dy = Hδ(x).

Hence the ultimate ruin probability in this case can be simplified to

ψ(u) = 1− (1− λmG

p
)H0(u), (4.1)

where mG :=
∫∞
0
xdG(x). The Laplace transform of the time of ruin and the Laplace

transform of the first exit time from [0, α) are given, respectively, by

E[e−δT |U(0) = u] =
λmG

p
Hδ(u)− (W0 ∗Hδ)(u)

and

E[e−δTα |U(0) = u] =
1

Hδ(α)
[Hδ(u)(W0 ∗Hδ)(α)−Hδ(α)(W0 ∗Hδ)(u) +Hδ(u)].

We further assume that the individual claim size is exponentially distributed with mean
mG. Then it reduces

H0(x) =
p− λmGe

−θx

p− λmG
,

where θ := 1/mG−λ/p. Substituting the above in (4.1) yields the well-known ultimate ruin
probability

ψ(u) =
λmG

p
e−θu.

We also obatin the survival distribution function of the deficit at ruin in this case which is
given by

D(u, v) =
λmG

p
exp(− v

mG
− θu).
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5. Conclusions

We considered the general compound Poisson risk model which has a premium rule de-
pending on the surplus. We solved the integro-differential equation to obtain the explicit
form of the Gerber-Shiu discounted penalty function. We could derive the closed-form solu-
tions for the ultimate ruin probability, the Laplace transform of the time of ruin, the survival
distribution function of the deficit at ruin and the Laplace transform of the first exit time
from [0, α) by adopting the corresponding penalty function. The case of a constant premium
rate and exponential claim sizes was treated as an example.

These closed-form solutions still remain complicated to use in many cases, albeit explicit.
In the further study we investigate alternative approxmiation or numerical methods which
are able to fit real data.
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